46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of ATP-Binding Cassette Transporter 1 R219K and M883I Polymorphisms on Development of Atherosclerosis: A Meta-Analysis of 58 Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Numerous epidemiological studies have evaluated the associations between ATP-binding cassette transporter 1 (ABCA1) R219K (rs2230806) and M883I (rs4149313) polymorphisms and atherosclerosis (AS), but results remain controversial. The purpose of the present study is to investigate whether these two polymorphisms facilitate the susceptibility to AS using a meta-analysis.

          Methods

          PubMed, Embase, Web of Science, Medline, Cochrane database, Clinicaltrials.gov, Current Controlled Trials, Chinese Clinical Trial Registry, CBMdisc, CNKI, Google Scholar and Baidu Library were searched to get the genetic association studies. All statistical analyses were done with Stata 11.0.

          Results

          Forty-seven articles involving 58 studies were included in the final meta-analysis. For the ABCA1 R219K polymorphism, 42 studies involving 12,551 AS cases and 19,548 controls were combined showing significant association between this variant and AS risk (for K allele vs. R allele: OR = 0.77, 95% CI = 0.71–0.84, P<0.01; for K/K vs. R/R: OR = 0.60, 95% CI = 0.51–0.71, P<0.01; for K/K vs. R/K+R/R: OR = 0.69, 95% CI = 0.60–0.80, P<0.01; for K/K+R/K vs. R/R: OR = 0.74, 95% CI = 0.66–0.83, P<0.01). For the ABCA1 M883I polymorphism, 16 studies involving 4,224 AS cases and 3,462 controls were combined. There was also significant association between the variant and AS risk (for I allele vs. M allele: OR = 0.85, 95% CI = 0.77–0.95, P<0.01).

          Conclusions

          The present meta-analysis suggested that the ABCA1 R219K and M883I polymorphisms were associated with the susceptibility to AS. However, due to the high heterogeneity in the meta-analysis, the results should be interpreted with caution.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A random-effects regression model for meta-analysis.

          Many meta-analyses use a random-effects model to account for heterogeneity among study results, beyond the variation associated with fixed effects. A random-effects regression approach for the synthesis of 2 x 2 tables allows the inclusion of covariates that may explain heterogeneity. A simulation study found that the random-effects regression method performs well in the context of a meta-analysis of the efficacy of a vaccine for the prevention of tuberculosis, where certain factors are thought to modify vaccine efficacy. A smoothed estimator of the within-study variances produced less bias in the estimated regression coefficients. The method provided very good power for detecting a non-zero intercept term (representing overall treatment efficacy) but low power for detecting a weak covariate in a meta-analysis of 10 studies. We illustrate the model by exploring the relationship between vaccine efficacy and one factor thought to modify efficacy. The model also applies to the meta-analysis of continuous outcomes when covariates are present.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations

            Background Meta-analysis is the systematic and quantitative synthesis of effect sizes and the exploration of their diversity across different studies. Meta-analyses are increasingly applied to synthesize data from genome-wide association (GWA) studies and from other teams that try to replicate the genetic variants that emerge from such investigations. Between-study heterogeneity is important to document and may point to interesting leads. Methodology/Principal Findings To exemplify these issues, we used data from three GWA studies on type 2 diabetes and their replication efforts where meta-analyses of all data using fixed effects methods (not incorporating between-study heterogeneity) have already been published. We considered 11 polymorphisms that at least one of the three teams has suggested as susceptibility loci for type 2 diabetes. The I2 inconsistency metric (measuring the amount of heterogeneity not due to chance) was different from 0 (no detectable heterogeneity) for 6 of the 11 genetic variants; inconsistency was moderate to very large (I2 = 32–77%) for 5 of them. For these 5 polymorphisms, random effects calculations incorporating between-study heterogeneity revealed more conservative p-values for the summary effects compared with the fixed effects calculations. These 5 associations were perused in detail to highlight potential explanations for between-study heterogeneity. These include identification of a marker for a correlated phenotype (e.g. FTO rs8050136 being associated with type 2 diabetes through its effect on obesity); differential linkage disequilibrium across studies of the identified genetic markers with the respective culprit polymorphisms (e.g., possibly the case for CDKAL1 polymorphisms or for rs9300039 and markers in linkage disequilibrium, as shown by additional studies); and potential bias. Results were largely similar, when we treated the discovery and replication data from each GWA investigation as separate studies. Significance Between-study heterogeneity is useful to document in the synthesis of data from GWA investigations and can offer valuable insights for further clarification of gene-disease associations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease.

              Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81+/-0.35 versus 1.73+/-0.35 mm in noncarriers, P:=0.001) and diffuse atherosclerosis (mean segment diameter 2.77+/-0.37 versus 2.70+/-0.37 mm, P:=0.005), and fewer coronary events (50% versus 59%, P:=0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42+/-0.49 versus 1.84+/-0.77 mmol/L, P:=0.001) and a trend toward increased HDL-C (0.91+/-0.22 versus 0.88+/-0.20 mmol/L, P:=0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CAD.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                23 January 2014
                : 9
                : 1
                : e86480
                Affiliations
                [1 ]Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Yuzhong District, Chongqing, PR China
                [2 ]Department of Neurology, The brain hospital of Liaocheng Hospital, Liaocheng, Shandong, PR China
                Nanjing Medical University, China
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YWY LLZ. Performed the experiments: YWY LLZ JCL DG YXC BHL JZW YL. Analyzed the data: YWY LLZ JCL DG YXC BHL JZW YL SQL. Contributed reagents/materials/analysis tools: MJZ CYG. Wrote the paper: YWY LLZ BHL.

                Article
                PONE-D-13-30092
                10.1371/journal.pone.0086480
                3900558
                edd2bd08-77b1-44fc-bfb9-d2ae7932b584
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 July 2013
                : 9 December 2013
                Page count
                Pages: 11
                Funding
                This work was supported by Natural Science Foundation Project of CQ CSTC (CSTC2012JJJQ10003 to Li-li Zhang) and National Natural Science Foundation of China (NSFC 81271282 to Jing-cheng Li). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Human Genetics
                Genetic Association Studies
                Medicine
                Cardiovascular
                Atherosclerosis
                Clinical Genetics
                Clinical Research Design
                Meta-Analyses
                Epidemiology
                Genetic Epidemiology
                Geriatrics
                Global Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article