Blog
About

26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autism spectrum disorders and neuropathology of the cerebellum

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

          Related collections

          Most cited references 160

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroglial activation and neuroinflammation in the brain of patients with autism.

          Autism is a neurodevelopmental disorder characterized by impaired communication and social interaction and may be accompanied by mental retardation and epilepsy. Its cause remains unknown, despite evidence that genetic, environmental, and immunological factors may play a role in its pathogenesis. To investigate whether immune-mediated mechanisms are involved in the pathogenesis of autism, we used immunocytochemistry, cytokine protein arrays, and enzyme-linked immunosorbent assays to study brain tissues and cerebrospinal fluid (CSF) from autistic patients and determined the magnitude of neuroglial and inflammatory reactions and their cytokine expression profiles. Brain tissues from cerebellum, midfrontal, and cingulate gyrus obtained at autopsy from 11 patients with autism were used for morphological studies. Fresh-frozen tissues available from seven patients and CSF from six living autistic patients were used for cytokine protein profiling. We demonstrate an active neuroinflammatory process in the cerebral cortex, white matter, and notably in cerebellum of autistic patients. Immunocytochemical studies showed marked activation of microglia and astroglia, and cytokine profiling indicated that macrophage chemoattractant protein (MCP)-1 and tumor growth factor-beta1, derived from neuroglia, were the most prevalent cytokines in brain tissues. CSF showed a unique proinflammatory profile of cytokines, including a marked increase in MCP-1. Our findings indicate that innate neuroimmune reactions play a pathogenic role in an undefined proportion of autistic patients, suggesting that future therapies might involve modifying neuroglial responses in the brain.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The cerebellar cognitive affective syndrome.

            Anatomical, physiological and functional neuroimaging studies suggest that the cerebellum participates in the organization of higher order function, but there are very few descriptions of clinically relevant cases that address this possibility. We performed neurological examinations, bedside mental state tests, neuropsychological studies and anatomical neuroimaging on 20 patients with diseases confined to the cerebellum, and evaluated the nature and severity of the changes in neurological and mental function. Behavioural changes were clinically prominent in patients with lesions involving the posterior lobe of the cerebellum and the vermis, and in some cases they were the most noticeable aspects of the presentation. These changes were characterized by: impairment of executive functions such as planning, set-shifting, verbal fluency, abstract reasoning and working memory; difficulties with spatial cognition including visual-spatial organization and memory; personality change with blunting of affect or disinhibited and inappropriate behaviour; and language deficits including agrammatism and dysprosodia. Lesions of the anterior lobe of the cerebellum produced only minor changes in executive and visual-spatial functions. We have called this newly defined clinical entity the 'cerebellar cognitive affective syndrome'. The constellation of deficits is suggestive of disruption of the cerebellar modulation of neural circuits that link prefrontal, posterior parietal, superior temporal and limbic cortices with the cerebellum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Model of autism: increased ratio of excitation/inhibition in key neural systems.

              Autism is a severe neurobehavioral syndrome, arising largely as an inherited disorder, which can arise from several diseases. Despite recent advances in identifying some genes that can cause autism, its underlying neurological mechanisms are uncertain. Autism is best conceptualized by considering the neural systems that may be defective in autistic individuals. Recent advances in understanding neural systems that process sensory information, various types of memories and social and emotional behaviors are reviewed and compared with known abnormalities in autism. Then, specific genetic abnormalities that are linked with autism are examined. Synthesis of this information leads to a model that postulates that some forms of autism are caused by an increased ratio of excitation/inhibition in sensory, mnemonic, social and emotional systems. The model further postulates that the increased ratio of excitation/inhibition can be caused by combinatorial effects of genetic and environmental variables that impinge upon a given neural system. Furthermore, the model suggests potential therapeutic interventions.
                Bookmark

                Author and article information

                Affiliations
                1Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto Toronto, ON, Canada
                2Program in Neuroscience, Hussman Institute for Autism Baltimore, MD, USA
                Author notes

                Edited by: Gul Dolen, Johns Hopkins University, USA

                Reviewed by: Oksana Sorokina, The University of Edinburgh, UK; David Quentin Beversdorf, University of Missouri, USA

                This article was submitted to Systems Biology, a section of the journal Frontiers in Neuroscience

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                06 November 2015
                2015
                : 9
                4635214 10.3389/fnins.2015.00420
                Copyright © 2015 Hampson and Blatt.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Counts
                Figures: 3, Tables: 0, Equations: 0, References: 159, Pages: 16, Words: 15108
                Categories
                Physiology
                Review

                Comments

                Comment on this article