65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors

      research-article
      1 ,
      Theoretical Biology & Medical Modelling
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Doxorubicin is a common anticancer agent used in the treatment of a number of neoplasms, with the lifetime dose limited due to the potential for cardiotoxocity. This has motivated efforts to develop optimal dosage regimes that maximize anti-tumor activity while minimizing cardiac toxicity, which is correlated with peak plasma concentration. Doxorubicin is characterized by poor penetration from tumoral vessels into the tumor mass, due to the highly irregular tumor vasculature. I model the delivery of a soluble drug from the vasculature to a solid tumor using a tumor cord model and examine the penetration of doxorubicin under different dosage regimes and tumor microenvironments.

          Methods

          A coupled ODE-PDE model is employed where drug is transported from the vasculature into a tumor cord domain according to the principle of solute transport. Within the tumor cord, extracellular drug diffuses and saturable pharmacokinetics govern uptake and efflux by cancer cells. Cancer cell death is also determined as a function of peak intracellular drug concentration.

          Results

          The model predicts that transport to the tumor cord from the vasculature is dominated by diffusive transport of free drug during the initial plasma drug distribution phase. I characterize the effect of all parameters describing the tumor microenvironment on drug delivery, and large intercapillary distance is predicted to be a major barrier to drug delivery. Comparing continuous drug infusion with bolus injection shows that the optimum infusion time depends upon the drug dose, with bolus injection best for low-dose therapy but short infusions better for high doses. Simulations of multiple treatments suggest that additional treatments have similar efficacy in terms of cell mortality, but drug penetration is limited. Moreover, fractionating a single large dose into several smaller doses slightly improves anti-tumor efficacy.

          Conclusion

          Drug infusion time has a significant effect on the spatial profile of cell mortality within tumor cord systems. Therefore, extending infusion times (up to 2 hours) and fractionating large doses are two strategies that may preserve or increase anti-tumor activity and reduce cardiotoxicity by decreasing peak plasma concentration. However, even under optimal conditions, doxorubicin may have limited delivery into advanced solid tumors.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors.

          Anticancer drugs gain access to solid tumors via the circulatory system and must penetrate the tissue to kill cancer cells. Here, we study the distribution of doxorubicin in relation to blood vessels and regions of hypoxia in solid tumors of mice. The distribution of doxorubicin was quantified by immunofluorescence in relation to blood vessels (recognized by CD31) of murine 16C and EMT6 tumors and human prostate cancer PC-3 xenografts. Hypoxic regions were identified by injection of EF5. The concentration of doxorubicin decreases exponentially with distance from tumor blood vessels, decreasing to half its perivascular concentration at a distance of about 40 to 50 mum, The mean distance from blood vessels to regions of hypoxia is 90 to 140 microm in these tumors. Many viable tumor cells are not exposed to detectable concentrations of drug following a single injection. Limited distribution of doxorubicin in solid tumors is an important and neglected cause of clinical resistance that is amenable to modification. The technique described here can be adapted to studying the distribution of other drugs within solid tumors and the effect of strategies to modify their distribution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microvascular permeability of normal and neoplastic tissues.

            A novel, noninvasive method was developed for microvascular permeability measurements in non-malignant (mature granulation) and neoplastic (VX2 carcinoma) tissues grown in the rabbit ear chamber. Dextran of 150,000 molecular weight, tagged with fluorescein isothiocyanate (FITC), was used as a representative tracer molecule. In vivo plasma concentration of dextran was measured by photometric analysis of the plasma layer of microvessels in the ear chamber. The plasma concentration in both normal and tumor preparations rose rapidly to a steady state with a time constant of 4.06 +/- 0.2 sec, and remained relatively constant at that level for the next 2 hr (elimination time constant = 1.77 +/- 0.9 X 10(5) sec). Extravasation of macromolecules from individual microvessels into the extravascular space was measured with the same photometric technique. Interstitial diffusion coefficients and microvascular permeability coefficients were determined by fitting a one-dimensional permeability-diffusion model to the extravasation data. The diffusivity of dextran in tumor interstitium was 2.2 +/- 1.4 X 10(-8) cm2/sec (n = 6) and in granulation tissue interstitium was 6.7 +/- 4.4 X 10(-10) cm2/sec (n = 6). Microvascular permeability in tumors was 7.26 +/- 3.29 X 10(-8) cm/sec (n = 11) and in granulation tissue was 57.24 +/- 39.24 X 10(-8) cm/sec (n = 10). These results on increased permeability (8-fold; P less than 0.002) and increased diffusivity (33-fold; P less than 0.001) in tumors provide a rational basis for the use of large-molecular-weight agents in the detection and treatment of solid tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy.

              Potential causes of drug resistance in solid tumors include genetically determined factors expressed in individual cells and those related to the solid tumor environment. Important among the latter is the requirement for drugs to penetrate into tumor tissue and to achieve a lethal concentration in all of the tumor cells. The present study was designed to characterize further the multicellular layer (MCL) method for studying drug penetration through tumor tissue and to provide information about tissue penetration for drugs used commonly in the treatment of human cancer. EMT-6 mouse mammary and MGH-U1 human bladder cancer cells were grown on collagen-coated semiporous Teflon membranes to form MCLs approximately 200 microm thick. The properties of MCLs were compared with those of tumors grown in mice from the same cells. The penetration of drugs through the MCL was evaluated by using radiolabeled drugs or analytical methods. The MCL developed an extracellular matrix containing both laminin and collagen, although there were some differences in expression of extracellular matrix proteins. Electron microscopy showed rare desmosomes in both MCL and tumors. The penetration of cisplatin, etoposide, gemcitabine, paclitaxel, and vinblastine through tissue in the MCL was slow compared with penetration through the Teflon support membrane alone. Our results suggest limited ability of anticancer drugs to reach tumor cells that are distant from blood vessels. The limited penetration of anticancer drugs through tumor tissue may be an important cause of clinical resistance of solid tumors to chemotherapy.
                Bookmark

                Author and article information

                Journal
                Theor Biol Med Model
                Theoretical Biology & Medical Modelling
                BioMed Central
                1742-4682
                2009
                9 August 2009
                : 6
                : 16
                Affiliations
                [1 ]Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA
                Article
                1742-4682-6-16
                10.1186/1742-4682-6-16
                2736154
                19664243
                ede9bd0a-724c-4066-b210-31812dc720b1
                Copyright © 2009 Eikenberry; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 January 2009
                : 9 August 2009
                Categories
                Research

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article