7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A global meta-analysis of yield stability in organic and conservation agriculture

      research-article
      1 , 2 , 1 , 3 ,
      Nature Communications
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the primary challenges of our time is to enhance global food production and security. Most assessments in agricultural systems focus on plant yield. Yet, these analyses neglect temporal yield stability, or the variability and reliability of production across years. Here we perform a meta-analysis to assess temporal yield stability of three major cropping systems: organic agriculture and conservation agriculture (no-tillage) vs. conventional agriculture, comparing 193 studies based on 2896 comparisons. Organic agriculture has, per unit yield, a significantly lower temporal stability (−15%) compared to conventional agriculture. Thus, although organic farming promotes biodiversity and is generally more environmentally friendly, future efforts should focus on reducing its yield variability. Our analysis further indicates that the use of green manure and enhanced fertilisation can reduce the yield stability gap between organic and conventional agriculture. The temporal stability (−3%) of no-tillage does not differ significantly from those of conventional tillage indicating that a transition to no-tillage does not affect yield stability.

          Abstract

          Yields vary between different cropping systems, though their temporal stability has not been quantified. Here, Knapp and van der Heijden present a meta-analysis showing that yields in organic agriculture have, per unit food produced, a lower temporal stability.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Soil fertility and biodiversity in organic farming.

          An understanding of agroecosystems is key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these systems less dependent on external inputs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparing the yields of organic and conventional agriculture.

            Numerous reports have emphasized the need for major changes in the global food system: agriculture must meet the twin challenge of feeding a growing population, with rising demand for meat and high-calorie diets, while simultaneously minimizing its global environmental impacts. Organic farming—a system aimed at producing food with minimal harm to ecosystems, animals or humans—is often proposed as a solution. However, critics argue that organic agriculture may have lower yields and would therefore need more land to produce the same amount of food as conventional farms, resulting in more widespread deforestation and biodiversity loss, and thus undermining the environmental benefits of organic practices. Here we use a comprehensive meta-analysis to examine the relative yield performance of organic and conventional farming systems globally. Our analysis of available data shows that, overall, organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable). Under certain conditions—that is, with good management practices, particular crop types and growing conditions—organic systems can thus nearly match conventional yields, whereas under others it at present cannot. To establish organic agriculture as an important tool in sustainable food production, the factors limiting organic yields need to be more fully understood, alongside assessments of the many social, environmental and economic benefits of organic farming systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Productivity limits and potentials of the principles of conservation agriculture.

              One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.
                Bookmark

                Author and article information

                Contributors
                marcel.vanderheijden@agroscope.admin.ch
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                7 September 2018
                7 September 2018
                2018
                : 9
                : 3632
                Affiliations
                [1 ]Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, CH 8046 Zurich Switzerland
                [2 ]ISNI 0000000123222966, GRID grid.6936.a, Chair of Plant Nutrition, Department of Plant Sciences, , Technical University of Munich, ; Emil-Ramann-Strasse 2, 85354 Freising, Germany
                [3 ]ISNI 0000 0004 1937 0650, GRID grid.7400.3, Department of Plant and Microbial Biology, , University of Zurich, ; CH 8008 Zurich, Switzerland
                Author information
                http://orcid.org/0000-0002-7223-7213
                http://orcid.org/0000-0001-7040-1924
                Article
                5956
                10.1038/s41467-018-05956-1
                6128901
                30194344
                edefd6ff-bb05-4efe-ac5d-dbddfb481b75
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 July 2017
                : 20 July 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation);
                Award ID: 166079
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article