30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Somatosensory cortical map changes following digit amputation in adult monkeys

      , ,   , , ,
      The Journal of Comparative Neurology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cortical representations of the hand in area 3b in adult owl monkeys were defined with use of microelectrode mapping techniques 2-8 months after surgical amputation of digit 3, or of both digits 2 and 3. Digital nerves were tied to prevent their regeneration within the amputation stump. Successive maps were derived in several monkeys to determine the nature of changes in map organization in the same individuals over time. In all monkeys studied, the representations of adjacent digits and palmar surfaces expanded topographically to occupy most or all of the cortical territories formerly representing the amputated digit(s). With the expansion of the representations of these surrounding skin surfaces (1) there were severalfold increases in their magnification and (2) roughly corresponding decreases in receptive field areas. Thus, with increases in magnification, surrounding skin surfaces were represented in correspondingly finer grain, implying that the rule relating receptive field overlap to separation in distance across the cortex (see Sur et al., '80) was dynamically maintained as receptive fields progressively decreased in size. These studies also revealed that: the discontinuities between the representations of the digits underwent significant translocations (usually by hundreds of microns) after amputation, and sharp new discontinuous boundaries formed where usually separated, expanded digital representations (e.g., of digits 1 and 4) approached each other in the reorganizing map, implying that these map discontinuities are normally dynamically maintained. Changes in receptive field sizes with expansion of representations of surrounding skin surfaces into the deprived cortical zone had a spatial distribution and time course similar to changes in sensory acuity on the stumps of human amputees. This suggests that experience-dependent map changes result in changes in sensory capabilities. The major topographic changes were limited to a cortical zone 500-700 micron on either side of the initial boundaries of the representation of the amputated digits. More distant regions did not appear to reorganize (i.e., were not occupied by inputs from surrounding skin surfaces) even many months after amputation. The representations of some skin surfaces moved in entirety to locations within the former territories of representation of amputated digits in every monkey studied. In man, no mislocation errors or perceptual distortions result from stimulation of surfaces surrounding a digital amputation.(ABSTRACT TRUNCATED AT 400 WORDS)

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Modality and topographic properties of single neurons of cat's somatic sensory cortex.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation

            Two to nine months after the median nerve was transected and ligated in adult owl and squirrel monkeys, the cortical sectors representing it within skin surface representations in Areas 3b and 1 were completely occupied by 'new' and expanded representations of surrounding skin fields. Some occupying representations were 'new' in the sense that (1) there was no evidence that these skin surfaces were represented in this region prior to median nerve transection; and (2) these skin surfaces retained their normal representation elsewhere within these two cortical representations of hand surfaces. Large 'new' representations of the dorsal surfaces of digits 1 and 2 (innervated by the radial nerve) and large 'new' representations of the hypothenar eminence (innervated by the ulnar nerve) were consistently recorded. Some surrounding skin surface representations expanded into the former median nerve zone, so that bordering skin surfaces (the ulnar insular palmar pad, the third digital palmar pad, glabrous ulnar digit 3, radial hand dorsum) were represented over far larger than normal cortical areas. These expanded representations of always-innervated skin sometimes appeared to move in entirety into the former median nerve representational zone (e.g. in the zone of representation of glabrous digit 4) were also consistently recorded. Reorganizational changes following median nerve sections were much more variable in Area 1 than in Area 3b. The topographic order of the reorganized cortical zone was comparable to normal. In at least most cortical sectors, there was a consistent, maintained relationship between receptive field size and magnification, i.e. as representations enlarged, receptive fields were correspondingly reduced in size. These studies indicate that topographic representations of the skin surface in adult monkeys are maintained dynamically. They clearly reveal that this projection system retains a self-organizing capacity in adult monkeys. They suggest that processes perhaps identical to a part of the original developmental organizing processes (by which details of field topographics are established) are operational throughout life in this projection system in primates. Some of the implications of these studies for the neural origins of tactile perception are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys.

              In an earlier study (Neuroscience 8, 33-55, 1983), we found that the cortex representing the skin of the median nerve within parietal somatosensory fields 3b and 1 was completely occupied by 'new' inputs from the ulnar and radial nerves, 2-9 months after the median nerve was cut and tied in adult squirrel and owl monkeys. In this report, we describe the results of studies directed toward determining the time course and likely mechanisms underlying this remarkable plasticity. Highly detailed maps of the hand surface representation were derived in monkeys before, immediately after, and at subsequent short and intermediate time stages after median nerve section. In one monkey, maps were derived before nerve section, immediately after nerve section, and 11, 22 and 144 days later. Thus, direct comparisons in cortical map structure could be made over time in this individual monkey. In other experiments, single maps were derived at given post-section intervals. These studies revealed that: (1) large cortical sectors were 'silenced' by median nerve transection. (2) Significant inputs restricted to the dorsum of the radial hand and the dorsum of digits 1, 2 and 3 were immediately 'unmasked' by median nerve transection. (3) These immediately 'unmasked' regions were topographically crude, and represented only fragments of this dorsal skin. They were transformed, over time, into very large, highly topographic and complete representations of dorsal skin surfaces. (4) Representations of bordering glabrous skin surfaces progressively expanded to occupy larger and larger portions of the former median nerve cortical representational zone. (5) These 'expanded' representations of ulnar nerve-innervated skin surfaces sometimes moved, in entirety, into the former median nerve representational zone. (6) Almost all of the former median nerve zone was driven by new inputs in a map derived 22 days after nerve section. At shorter times (3, 6 and 11 days), 'reoccupation' was still incomplete. (7) Very significant changes in map dimensions within and outside of the former median skin cortical field were seen after the 'reoccupation' of the deprived cortex by 'new' inputs was initially completed. (8) Progressive changes were recorded within the original ulnar and radial nerve cortical representational zones, as skin surfaces originally overtly represented wholly within these regions expanded into the former median nerve zone. (9) Throughout the studied period, the cortical representational loci of many skin sites appeared to change continually and often markedly. (10) The locations of map discontinuities also shifted significantly over time. (11) Concomitant with changes in representational magnification over time, inverse changes in receptive field sizes were recorded.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                The Journal of Comparative Neurology
                J. Comp. Neurol.
                Wiley
                0021-9967
                1096-9861
                April 20 1984
                April 20 1984
                : 224
                : 4
                : 591-605
                Article
                10.1002/cne.902240408
                6725633
                ee7753c5-f865-4957-9b91-8a54b3b47384
                © 1984

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article