113
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CORTICAL PLASTICITY: From Synapses to Maps

      1 , 2
      Annual Review of Neuroscience
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been clear for almost two decades that cortical representations in adult animals are not fixed entities, but rather, are dynamic and are continuously modified by experience. The cortex can preferentially allocate area to represent the particular peripheral input sources that are proportionally most used. Alterations in cortical representations appear to underlie learning tasks dependent on the use of the behaviorally important peripheral inputs that they represent. The rules governing this cortical representational plasticity following manipulations of inputs, including learning, are increasingly well understood. In parallel with developments in the field of cortical map plasticity, studies of synaptic plasticity have characterized specific elementary forms of plasticity, including associative long-term potentiation and long-term depression of excitatory postsynaptic potentials. Investigators have made many important strides toward understanding the molecular underpinnings of these fundamental plasticity processes and toward defining the learning rules that govern their induction. The fields of cortical synaptic plasticity and cortical map plasticity have been implicitly linked by the hypothesis that synaptic plasticity underlies cortical map reorganization. Recent experimental and theoretical work has provided increasingly stronger support for this hypothesis. The goal of the current paper is to review the fields of both synaptic and cortical map plasticity with an emphasis on the work that attempts to unite both fields. A second objective is to highlight the gaps in our understanding of synaptic and cellular mechanisms underlying cortical representational plasticity.

          Related collections

          Most cited references176

          • Record: found
          • Abstract: found
          • Article: not found

          A synaptic model of memory: long-term potentiation in the hippocampus.

          Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic Activity and the Construction of Cortical Circuits

            Vision is critical for the functional and structural maturation of connections in the mammalian visual system. Visual experience, however, is a subset of a more general requirement for neural activity in transforming immature circuits into the organized connections that subserve adult brain function. Early in development, internally generated spontaneous activity sculpts circuits on the basis of the brain's "best guess" at the initial configuration of connections necessary for function and survival. With maturation of the sense organs, the developing brain relies less on spontaneous activity and increasingly on sensory experience. The sequential combination of spontaneously generated and experience-dependent neural activity endows the brain with an ongoing ability to accommodate to dynamically changing inputs during development and throughout life.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Receptive fields and functional architecture of monkey striate cortex

                Bookmark

                Author and article information

                Journal
                Annual Review of Neuroscience
                Annu. Rev. Neurosci.
                Annual Reviews
                0147-006X
                1545-4126
                March 1998
                March 1998
                : 21
                : 1
                : 149-186
                Affiliations
                [1 ]Departments of Neurobiology and Psychology, University of California Los Angeles, Los Angeles, California 90095-1763
                [2 ]Keck Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94143-0732
                Article
                10.1146/annurev.neuro.21.1.149
                9530495
                ff4eed7d-c02e-4806-b3f2-ad8763bda6c6
                © 1998
                History

                Comments

                Comment on this article