28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Commentary on “Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice”

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is the most common form of age related motor disorder (Hsu et al., 2010; Ferree et al., 2012). Mutations in leucine-rich repeat kinase 2, LRRK2, gene are considered to be genetic determinants of PD. Among them G2019S is the most prevalent amino acid substitution mutation in LRRK2 and accounts for 1–2% of sporadic PD cases (Healy et al., 2008). LRRK2 is involved in many signaling pathways and its role is different in different cell types. In case of PD the main interest lies in understanding the function of LRRK2 in neuronal physiology. The study of Beccano-Kelly et al. attempts to investigate the role of LRRK2 in synaptic physiology in the context of loss of function and gain of function. Authors compared and contrasted obtained results on normal LRRK2 functions to effects of G2019S mutant LRRK2. To perform experiments they used primary cortical cultures prepared from LRRK2 transgenic overexpressing (OE), knock-out (KO), and knock-in G2019S (KI) mice. Beccano-Kelly et al. report that LRRK2 modulates synaptic function via regulation of glutamatergic activity. This result is a continuation of earlier findings obtained by other research groups in Drosophila model (Lee et al., 2010; Matta et al., 2012) and in mammalian cortical cultures (Piccoli et al., 2011; Parisiadou et al., 2014). Mentioned studies are contradictory in relation to whether deletion of LRRK2 upregulates, or downregulates, glutamatergic synaptic transmission. Beccano-Kelly et al. found out that LRRK2 knock out leads to reduced glutamatergic activity. The current study and previous reports from other groups do not uncover the mechanism of LRRK2 mediated synaptic function. This point should be investigated in the future studies. The most interesting result of Beccano-Kelly et al. was that in the absence of any change to synapse density glutamate release was markedly elevated in knock-in cultures. This indicated that physiological levels of G2019S LRRK2 elevate probability of release. Next observation was that the phosphorylation of synapsin 1 was significantly reduced in KI neurons. Based on obtained results authors concluded that perturbations to the presynaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Taken together, the study of Beccano-Kelly et al. presents novel data about the role of normal and G2019S mutated LRRK2 in regulation of synaptic transmission. On the one hand, discovering the signaling mechanism underlying LRRK2-mediated regulation of synaptic function could lead to the development of PD-preventing therapies. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis.

          LRRK2 is a kinase mutated in Parkinson's disease, but how the protein affects synaptic function remains enigmatic. We identified LRRK2 as a critical regulator of EndophilinA. Using genetic and biochemical studies involving Lrrk loss-of-function mutants and Parkinson-related LRRK2(G2019S) gain-of-kinase function, we show that LRRK2 affects synaptic endocytosis by phosphorylating EndoA at S75, a residue in the BAR domain. We show that LRRK2-mediated EndoA phosphorylation has profound effects on EndoA-dependent membrane tubulation and membrane association in vitro and in vivo and on synaptic vesicle endocytosis at Drosophila neuromuscular junctions in vivo. Our work uncovers a regulatory mechanism that indicates that reduced LRRK2 kinase activity facilitates EndoA membrane association, while increased kinase activity inhibits membrane association. Consequently, both too much and too little LRRK2-dependent EndoA phosphorylation impedes synaptic endocytosis, and we propose a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity.

            Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged Lrrk2(-/-) mice after treatment with a Drd1 agonist. Notably, a Parkinson's disease-related Lrrk2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a previously unknown regulatory role for LRRK2 in PKA signaling and suggest a pathogenic mechanism of SPN dysfunction in Parkinson's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction.

              Mutations in leucine-rich repeat kinase 2 (LRRK2) are linked to familial as well as sporadic forms of Parkinson's disease (PD), a neurodegenerative disease characterized by dysfunction and degeneration of dopaminergic and other types of neurons. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Here, we show that LRRK2 controls synaptic morphogenesis at the Drosophila neuromuscular junction. Loss of Drosophila LRRK2 results in synaptic overgrowth, whereas overexpression of Drosophila LRRK or human LRRK2 has opposite effects. Alteration of LRRK2 activity also affects neurotransmission. LRRK2 exerts its effects on synaptic morphology by interacting with distinct downstream effectors at the presynaptic and postsynaptic compartments. At the postsynapse, LRRK2 interacts with the previously characterized substrate 4E-BP, an inhibitor of protein synthesis. At the presynapse, LRRK2 phosphorylates and negatively regulates the microtubule (MT)-binding protein Futsch. These results implicate synaptic dysfunction caused by deregulated protein synthesis and aberrant MT dynamics in LRRK2 pathogenesis and offer a new paradigm for understanding and ultimately treating PD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                28 October 2014
                2014
                : 8
                : 351
                Affiliations
                [1] 1Laboratory of Molecular Meurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University St. Petersburg, Russia
                [2] 2Department of Physiology, UT Southwestern Medical Center at Dallas Dallas, TX, USA
                Author notes

                This article was submitted to the journal Frontiers in Cellular Neuroscience.

                Edited and reviewed by: Arianna Maffei, SUNY Stony Brook, USA

                Article
                10.3389/fncel.2014.00351
                4211405
                ee8f88bb-ccf9-4644-b1d3-6674ab69ed9f
                Copyright © 2014 Popugaeva and Bezprozvanny.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 September 2014
                : 07 October 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 7, Pages: 2, Words: 931
                Categories
                Neuroscience
                General Commentary Article

                Neurosciences
                parkinson's disease,lrrk2,g2019s,synapse function,glutamate transmission
                Neurosciences
                parkinson's disease, lrrk2, g2019s, synapse function, glutamate transmission

                Comments

                Comment on this article