53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MAPK pathway activation in pilocytic astrocytoma

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.

          Oncogenic ras can transform most immortal rodent cells to a tumorigenic state. However, transformation of primary cells by ras requires either a cooperating oncogene or the inactivation of tumor suppressors such as p53 or p16. Here we show that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest. The arrest induced by ras is accompanied by accumulation of p53 and p16, and is phenotypically indistinguishable from cellular senescence. Inactivation of either p53 or p16 prevents ras-induced arrest in rodent cells, and E1A achieves a similar effect in human cells. These observations suggest that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an oncogenic stimulus. Negation of ras-induced senescence may be relevant during multistep tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas.

            Published data on prognostic and predictive factors in patients with gliomas are largely based on clinical trials and hospital-based studies. This review summarizes data on incidence rates, survival, and genetic alterations from population-based studies of astrocytic and oligodendrogliomas that were carried out in the Canton of Zurich, Switzerland (approximately 1.16 million inhabitants). A total of 987 cases were diagnosed between 1980 and 1994 and patients were followed up at least until 1999. While survival rates for pilocytic astrocytomas were excellent (96% at 10 years), the prognosis of diffusely infiltrating gliomas was poorer, with median survival times (MST) of 5.6 years for low-grade astrocytoma WHO grade II, 1.6 years for anaplastic astrocytoma grade III, and 0.4 years for glioblastoma. For oligodendrogliomas the MSTwas 11.6 years for grade II and 3.5 years for grade III. TP53 mutations were most frequent in gemistocytic astrocytomas (88%), followed by fibrillary astrocytomas (53%) and oligoastrocytomas (44%), but infrequent (13%) in oligodendrogliomas. LOH 1p/19q typically occurred in tumors without TP53 mutations and were most frequent in oligodendrogliomas (69%), followed by oligoastrocytomas (45%), but were rare in fibrillary astrocytomas (7%) and absent in gemistocytic astrocytomas. Glioblastomas were most frequent (3.55 cases per 100,000 persons per year) adjusted to the European Standard Population, amounting to 69% of total incident cases. Observed survival rates were 42.4% at 6 months, 17.7% at one year, and 3.3% at 2 years. For all age groups, survival was inversely correlated with age, ranging from an MST of 8.8 months ( 80 years). In glioblastomas, LOH 10q was the most frequent genetic alteration (69%), followed by EGFR amplification (34%), TP53 mutations (31%), p16INK4a deletion (31%), and PTEN mutations (24%). LOH 10q occurred in association with any of the other genetic alterations, and was the only alteration associated with shorter survival of glioblastoma patients. Primary (de novo) glioblastomas prevailed (95%), while secondary glioblastomas that progressed from low-grade or anaplastic gliomas were rare (5%). Secondary glioblastomas were characterized by frequent LOH 10q (63%) and TP53 mutations (65%). Of the TP53 mutations in secondary glioblastomas, 57% were in hot-spot codons 248 and 273, while in primary glioblastomas, mutations were more evenly distributed. G:C-->A:T mutations at CpG sites were more frequent in secondary than primary glioblastomas, suggesting that the acquisition of TP53 mutations in these glioblastoma subtypes may occur through different mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAP kinase and pain.

              Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
                Bookmark

                Author and article information

                Contributors
                +49-6221-424618 , +49-6221-424639 , s.pfister@dkfz-heidelberg.de
                Journal
                Cell Mol Life Sci
                Cell. Mol. Life Sci
                Cellular and Molecular Life Sciences
                SP Birkhäuser Verlag Basel (Basel )
                1420-682X
                1420-9071
                13 December 2011
                13 December 2011
                June 2012
                : 69
                : 11
                : 1799-1811
                Affiliations
                [1 ]Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
                [2 ]Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
                [3 ]Clinical Cooperation Unit Pediatric Oncology, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
                Article
                898
                10.1007/s00018-011-0898-9
                3350769
                22159586
                eed8ee73-63e7-4f82-be4e-25b7db97a73e
                © The Author(s) 2011
                History
                : 11 October 2011
                : 22 November 2011
                : 24 November 2011
                Categories
                Review
                Custom metadata
                © Springer Basel AG 2012

                Molecular biology
                lgg,senescence,fusion,mapk,braf,low grade glioma,pilocytic,astrocytoma
                Molecular biology
                lgg, senescence, fusion, mapk, braf, low grade glioma, pilocytic, astrocytoma

                Comments

                Comment on this article