16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cucurbituril family of drug delivery vehicles have been examined for their tissue specific toxicity using ex vivo models.

          Abstract

          The cucurbituril family of drug delivery vehicles have been examined for their tissue specific toxicity using ex vivo models. Cucurbit[6]uril (CB[6]), cucurbit[7]uril (CB[7]) and the linear cucurbituril-derivative Motor2 were examined for their neuro-, myo- and cardiotoxic activity and compared with β-cyclodextrin. The protective effect of drug encapsulation by CB[7] was also examined on the platinum-based anticancer drug cisplatin. The results show that none of the cucurbiturils have statistically measurable neurotoxicity as measured using mouse sciatic nerve compound action potential. Cucurbituril myotoxicity was measured by nerve-muscle force of contraction through chemical and electrical stimulation. Motor2 was found to display no myotoxicity, whereas both CB[6] and CB[7] showed myotoxic activity via a presynaptic effect. Finally, cardiotoxicity, which was measured by changes in the rate and force of right and left atria contraction, was observed for all three cucurbiturils. Free cisplatin displays neuro-, myo- and cardiotoxic activity, consistent with the side-effects seen in the clinic. Whilst CB[7] had no effect on the level of cisplatin's neurotoxic activity, drug encapsulation within the macrocycle had a marked reduction in both the drug's myo- and cardiotoxic activity. Overall the results are consistent with the relative lack of toxicity displayed by these macrocycles in whole animal acute systemic toxicity studies and indicate continued potential of cucurbiturils as drug delivery vehicles for the reduction of the side effects associated with platinum-based chemotherapy.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Functionalized cucurbiturils and their applications.

          Cucurbit[n]uril (CB[n], n = 5-10), a new family of molecular hosts comprising n glycoluril units, have gained much attention in the new millennium for their exceptional molecular recognition ability. The CB homologues have brought dynamism to CB chemistry, as witnessed by the heightened interest in the field for the last several years. Compared to the chemistry of cyclodextrins and calixarenes, however, that of CB[n] has developed slowly until recently, which may be attributed mainly to their poor solubility in common solvents, and inability to functionalize these molecules. The direct functionalization method of CB[n] propelled CB chemistry to a new height as this new method not only solved the solubility problem but also opened up the gateway to the generation of tailor-made CB[n] derivatives. The functionalization of CB[n] led us to investigate numerous applications including artificial ion channels, vesicles, stationary phases in chromatography, ISEs, polymers, nanomaterials, and many others. This tutorial review describes the recent advances and challenges in the functionalization of CBs along with the applications of functionalized CBs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study.

            Cucurbit[n]urils (CB[n]) are potential stabilizing, solubilizing, activating, and delivering agents for drugs. The toxicity of the macrocyclic host molecules cucurbit[7]uril (CB[7]), the most water-soluble homologue, as well as cucurbit[8]uril (CB[8]) has been evaluated. In vitro studies on cell cultures revealed an IC(50) value of 0.53 +/- 0.02 mM for CB[7], corresponding to around 620 mg of CB[7] per kg of cell material. Live-cell imaging studies performed on cells treated with subtoxic amounts of CB[7] showed no detrimental effects on the cellular integrity as assessed by mitochondrial activity. For CB[8], no significant cytotoxicity was observed within its solubility range. The bioadaptability of the compounds was further examined through in vivo studies on mice, where intravenous administration of CB[7] showed a maximum tolerated dosage of 250 mg kg(-1), while oral administration of a CB[7]/CB[8] mixture showed a tolerance of up to 600 mg kg(-1). The combined results indicate a sufficiently low toxicity to encourage further exploration of CB[n] as additives for medicinal and pharmaceutical use.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemotherapy-induced peripheral neuropathy

                Bookmark

                Author and article information

                Journal
                TROEE8
                Toxicol. Res.
                Toxicol. Res.
                Royal Society of Chemistry (RSC)
                2045-452X
                2045-4538
                2014
                2014
                : 3
                : 6
                : 447-455
                Article
                10.1039/C4TX00082J
                25414788
                ef0cd01a-3dd8-4e4f-ba9c-aa0ba2c05eef
                © 2014
                History

                Comments

                Comment on this article