+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found

      Hypersensitive response — A biophysical phenomenon of producers

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Hypersensitive response/reaction is a form of the cellular demise frequently linked alongside plant resistance against pathogen infection. Main transducers for this reaction are the intermediates of reactive oxygen and ion fluxes which are plausibly needed for hypersensitive response (Hpr Sen Rsp). An immediate and enormous energy production and its intra-cellular biochemical conduction are imperative for an Hpr Sen Rsp to be occurred. A number of studies proved that there are such diverse types of factors involved in triggering of Hpr Sen Rsp that morphologies of dead cells have become a vast topic of study. Hpr Sen Rsp could play a frolic role in plants as certain programmed cellular disintegrations in other organisms, to restrict pathogen growth. In fact, Hpr Sen Rsp can be involved in all types of tissues and most of the developmental stages.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: not found
          • Article: not found

          Plant pathogens and integrated defence responses to infection.

          Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistance gene-dependent plant defense responses.

              • Record: found
              • Abstract: found
              • Article: not found

              Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process.

              Classical genetic and molecular data show that genes determining disease resistance in plants are frequently clustered in the genome. Genes for resistance (R genes) to diverse pathogens cloned from several species encode proteins that have motifs in common. These motifs indicate that R genes are part of signal-transduction systems. Most of these R genes encode a leucine-rich repeat (LRR) region. Sequences encoding putative solvent-exposed residues in this region are hypervariable and have elevated ratios of nonsynonymous to synonymous substitutions; this suggests that they have evolved to detect variation in pathogen-derived ligands. Generation of new resistance specificities previously had been thought to involve frequent unequal crossing-over and gene conversions. However, comparisons between resistance haplotypes reveal that orthologs are more similar than paralogs implying a low rate of sequence homogenization from unequal crossing-over and gene conversion. We propose a new model adapted and expanded from one proposed for the evolution of vertebrate major histocompatibility complex and immunoglobulin gene families. Our model emphasizes divergent selection acting on arrays of solvent-exposed residues in the LRR resulting in evolution of individual R genes within a haplotype. Intergenic unequal crossing-over and gene conversions are important but are not the primary mechanisms generating variation.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                1 June 2013
                : 3
                : 2
                : 105-110
                [ 1 ] Department of Physics, Bahauddin Zakariya University, Multan, Pakistan
                [ 2 ] Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
                Author notes
                Review Articles


                Comment on this article