2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene-agnostic approaches to treating inherited retinal degenerations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are “just around the corner” for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.

          Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)(-/-) Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases

            Microglia play a pivotal role in maintenance of brain homeostasis, but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Alzheimer’s disease (AD) and in microglia surrounding neuritic β-amyloid (Aβ) -plaques in human AD brains. The APOE pathway mediated a switch from a homeostatic to neurodegenerative microglia phenotype following phagocytosis of apoptotic neurons. Triggering receptor expressed on myeloid cells 2 (TREM2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia led to a loss in their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Microglia change their phenotype and function during aging and neurodegeneration, but the underlying molecular mechanisms for this change remain unknown. Krasemann, Madore, et al. identify the TREM2-APOE pathway as a major regulator of microglia phenotypic change in neurodegenerative diseases, which may serve as a target to restore homeostatic microglia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia-mediated neurotoxicity: uncovering the molecular mechanisms.

              Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                13 April 2023
                2023
                : 11
                : 1177838
                Affiliations
                [1] 1 Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases , Department of Ophthalmology , Duke Eye Center , Duke University School of Medicine , Durham, NC, United States
                [2] 2 Department of Cell Biology , Duke University School of Medicine , Durham, NC, United States
                Author notes

                Edited by: Glenn Prazere Lobo, University of Minnesota Twin Cities, United States

                Reviewed by: Valeria Marigo, University of Modena and Reggio Emilia, Italy

                Janosch P. Heller, Dublin City University, Ireland

                *Correspondence: Alessandro Iannaccone, aiannacc@ 123456yahoo.com

                This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                1177838
                10.3389/fcell.2023.1177838
                10133473
                37123404
                ef759e89-f2a0-429d-821e-464db1cf499e
                Copyright © 2023 Chew and Iannaccone.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 March 2023
                : 31 March 2023
                Funding
                This work was supported by an Unrestricted Research Award from Research to Prevent Blindness, Inc., New York, NY to the Duke Eye Center; AI’s work was supported by private donations to the Duke Retinal Degenerations Research Fund, the Duke Retinal Genetics Fund, and the Maria Laura Ciccarelli Duke Memorial Fund. LAC is supported by NIH 5T32GM007171-48 (to the Duke University School of Medicine Medical Scientist Training Program).
                Categories
                Cell and Developmental Biology
                Review

                inherited retinal degenerations,retinal dystrophies,gene therapy,gene-agnostic,optogenetics,photoreceptor transplantation,retinal prosthetics,stem cells

                Comments

                Comment on this article