4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wound Repair and Regeneration: Mechanisms, Signaling

      editorial
      International Journal of Molecular Sciences
      MDPI

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wound healing plays an integral part of cellular and molecular events. This process may be implicated in tissue regeneration. Regeneration can be contributed to complete tissue restoration and improvement of tissue disfigurement towards the original condition. Also, such cellular and molecular events are orchestrated both spatially and temporally. Tissue regeneration, scar-less wound healing, and fibrosis are all dependent upon the phylogenetic event of the organism, as well as the inflammatory responses, which are influenced by age, sex, and interaction with the environment [1]. Under these conditions, the lack of a true blastema allows for only scarring wound repair in the inbred MRL/MpJ strain of mice and the outbred CD-1 and Swiss Webster laboratory mouse stocks [2]. In cytokines, IL-1 and TNF-α are always present during wound repair, but their pleiotropic and synergistic effects are not well understood. Rather than improving wound repair in young males, IL-1 signaling blockade increased epithelial thickness and IL-1β and TNF-α expression, and diminished epidermal apoptosis. TNF-α impaired wound repair in middle-aged females, which exhibited acanthosis and overexpression of IL-1, but no change in apoptosis. These findings suggest that this mechanism of epidermal thickening differs from that observed in IL1-ra-treated animals [3]. In this issue, Aoki et al. report a sphingosine-1-phosphate (S1P), which is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. They clarify the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The SphK1 overexpression also leads to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role [4]. Kanno et al. find an interferon (IFN)-γ, known for its inhibitory effects on collagen synthesis by fibroblasts in vitro; however, information is limited regarding its role in wound healing in vivo. IFN-γ might be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses in IFN-γ-deficient (KO) mice [5]. Wound impairment is accelerated and completed with the local administration of recombinant human (rh)-growth hormone (GH) accelerating PU healing in non-obese diabetic/severe combined immunodeficient mice engrafted with a full-thickness human skin graft model in 60 days [6]. Other than skin, matrisome properties of scaffolds directing fibroblasts in idiopathic pulmonary fibrosis [7] and liver regeneration are enhanced by hepatocyte-derived angiogenesis via B-cell CLL/lymphoma/nuclear factor-Kappa B signaling [8], while wound repair and regeneration mechanisms of autologous adipose-derived stem cells in some patients with human immunodeficiency virus (HIV), treated by highly active antiretroviral therapy, are elucidated and analyzed in detail [9]. In novel aspects, the cloning and identification of Periplaneta americana, the American cockroach, thymosin (Pa-THYs) are obtained by bioinformatics and it is found that Pa-THYs also stimulate the expression of several key growth factors to promote wound healing. The data suggest that Pa-THYs could be a potential drug for promoting wound repair [10]. Lastly, maresins (MaRs) and macrophages are reviewed, focusing on the potent action of MaRs to enhance M2 macrophage phenotypic profiles to possibly alleviate inflammatory pain [11].

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

          Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Defect of Interferon γ Leads to Impaired Wound Healing through Prolonged Neutrophilic Inflammatory Response and Enhanced MMP-2 Activation

            Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation

              Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1−/− mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                15 December 2019
                December 2019
                : 20
                : 24
                : 6328
                Affiliations
                Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 8140180, Japan; akitas@ 123456hf.rim.or.jp
                Author information
                https://orcid.org/0000-0001-8225-9363
                Article
                ijms-20-06328
                10.3390/ijms20246328
                6940902
                31847465
                efb4648e-54ca-4f25-a09e-52f4602e6c49
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 December 2019
                : 13 December 2019
                Categories
                Editorial

                Molecular biology
                Molecular biology

                Comments

                Comment on this article