11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of different doses of leucine ingestion following eight weeks of resistance exercise on protein synthesis and hypertrophy of skeletal muscle in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          [Purpose]

          This study was designed to determine the appropriate Leucine intake volume to obtain the effects of restoring damaged muscle through the synthesis of muscle proteins to increase skeletal muscle and improve exercise performance, and to achieve enhanced muscle hypertrophy.

          [Methods]

          To clarify the effects of leucine on skeletal muscle hypertrophy of SD rats, following eight weeks of resistance exercise (climbing ladder), the mass of the FHL (Flexor hallucis longus) was measured after extraction, after which change in the activity of muscle signaling proteins (PKB/Akt, mTOR, p70S6K, 4EBP1) was analyzed.

          [Results]

          The expressions of PKB/Akt, mTOR and p70S6K were increased in L5 (Leucine 50% administration group) compared with the control group (CON) and exercise group (Ex, exercise training group); EL1 (exercise + 10% leucine administration group) and EL5 (exercise + 50% Leucine administration) also exhibited increased expressions of PKB/Akt, mTOR, and p70S6K, while no difference between EL1 and EL5 were observed. No significant differences in 4EBP1 were found among any of the groups. In addition, there were no differences in FHL mass, while relative mass (FHL/body mass) was increased in the exercise group (Ex, EL1, EL5) compared with the control group. No differences were observed among the exercise groups.

          [Conclusion]

          The present study demonstrated that the relative body mass was increased in the EX group compared with the CON group, while no significant differences in muscle mass could be found among the groups. Even though some signaling proteins were increased, or some differences existed among groups, there were no differences in muscle mass between the leucine administration and exercise training combined with leucine administration groups in the present study.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle.

          We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced mTOR signaling might be responsible for the greater muscle protein synthesis when leucine-enriched EAA+CHOs are ingested during postexercise recovery. Sixteen male subjects were randomized to one of two groups (control or EAA+CHO). The EAA+CHO group ingested the nutrient solution 1 h after resistance exercise. mTOR signaling was assessed by immunoblotting from repeated muscle biopsy samples. Mixed muscle fractional synthetic rate (FSR) was measured using stable isotope techniques. Muscle protein synthesis and 4E-BP1 phosphorylation during exercise were significantly reduced (P < 0.05). Postexercise FSR was elevated above baseline in both groups at 1 h but was even further elevated in the EAA+CHO group at 2 h postexercise (P < 0.05). Increased FSR was associated with enhanced phosphorylation of mTOR and S6K1 (P < 0.05). Akt phosphorylation was elevated at 1 h and returned to baseline by 2 h in the control group, but it remained elevated in the EAA+CHO group (P < 0.05). 4E-BP1 phosphorylation returned to baseline during recovery in control but became elevated when EAA+CHO was ingested (P < 0.05). eEF2 phosphorylation decreased at 1 and 2 h postexercise to a similar extent in both groups (P < 0.05). Our data suggest that enhanced activation of the mTOR signaling pathway is playing a role in the greater synthesis of muscle proteins when resistance exercise is followed by EAA+CHO ingestion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat.

            In humans, progressive resistance exercise is recognized for its ability to induce skeletal muscle hypertrophy. In an attempt to develop an animal model which mimics human progressive resistance exercise, Sprague-Dawley rats were trained to climb a 1.1-m vertical (80 degree incline) ladder with weights secured to their tail. The rats were trained once every 3 days for 8 weeks. Each training session consisted of 4-9 (6.02 +/- 0.23) climbs requiring 8-12 dynamic movements per climb. Based on performance, the weight carried during each session was progressively increased. Over the course of 8 weeks, the maximal amount of weight the rats could carry increased 287%, p
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging.

              Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.
                Bookmark

                Author and article information

                Journal
                J Exerc Nutrition Biochem
                J Exerc Nutrition Biochem
                JENB
                Journal of Exercise Nutrition & Biochemistry
                Korean Society for Exercise Nutrition
                2233-6834
                2233-6842
                March 2015
                31 March 2015
                : 19
                : 1
                : 31-38
                Affiliations
                Department of Exercise physiology, Korea National Sport University, Seoul, Korea
                Author notes
                [* ]Corresponding author: Chang Keun Kim, Tel. 82-2-410-6815, Email. ckkim@ 123456knsu.ac.kr
                Article
                jenb-19-1-31
                10.5717/jenb.2015.19.1.31
                4424444
                25960953
                efdf9798-c43f-4d23-b6ce-15e2d0a4b3ba
                ⓒ2015 The Korean Society for Exercise Nutrition

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 January 2015
                : 27 February 2015
                : 11 March 2015
                Categories
                Original Paper

                leucine,dose difference,resistance exercise,mtor,muscle,protein synthesis,hypertrophy

                Comments

                Comment on this article