33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is one of the most common lethal human malignancies worldwide and its advanced status is frequently resistant to conventional chemotherapeutic agents and radiation. We evaluated the cytotoxic effect of the orally bioavailable dual PI3K/mTOR inhibitor, NVP-BGT226, on a panel of HCC cell lines, since hyperactivated PI3K/Akt/mTOR signaling pathway could represent a biomolecular target for Small Inhibitor Molecules in this neoplasia. We analyzed the drug activity in both normoxia and hypoxia conditions, the latter playing often a relevant role in the induction of chemoresistance and angiogenesis.

          In normoxia NVP-BGT226 caused cell cycle arrest in the G 0/G 1 phase of the cell cycle, induced apoptosis and autophagy at low concentrations. Interestingly the drug inactivated p-Akt and p-S6 at < 10 nM concentration.

          In hypoxia NVP-BGT226 maintained its cytotoxic efficacy at the same concentration as documented by MTT assays and Western blot analysis. Moreover, the drug showed in hypoxia inhibitory properties against angiogenesis by lowering the expression of the transcription factor HIF-1α and of VEGF.

          Our results indicate that NVP-BGT226 has a potent cytotoxic effect on HCC cell lines also in hypoxia condition, thus emerging as a potential candidate for cancer treatment in HCC targeted therapy.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the use and interpretation of assays for monitoring autophagy.

          In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.

            The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip-1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip-1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor hypoxia in cancer therapy.

              Human solid tumors are invariably less well-oxygenated than the normal tissues from which they arose. This so-called tumor hypoxia leads to resistance to radiotherapy and anticancer chemotherapy as well as predisposing for increased tumor metastases. In this chapter, we examine the resistance of tumors to radiotherapy produced by hypoxia and, in particular, address the question of whether this resistance is the result of the physicochemical free radical mechanism that produces resistance to radiation killing of cells in vitro. We conclude that a major part of the resistance, though perhaps not all, is the result of the physicochemical free radical mechanism of the oxygen effect in sensitizing cells to ionizing radiation. However, in modeling studies used to evaluate the effect of fractionated irradiation on tumor response, it is essential to consider the fact that the tumor cells are at a wide range of oxygen concentrations, not just at the extremes of oxygenated and hypoxic. Prolonged hypoxia of the tumor tissue also leads to necrosis, and necrotic regions are also characteristic of solid tumors. These two characteristics--hypoxia and necrosis--represent clear differences between tumors and normal tissues and are potentially exploitable in cancer treatment. We discuss strategies for exploiting these differences. One such strategy is to use drugs that are toxic only under hypoxic conditions. The second strategy is to take advantage of the selective induction under hypoxia of the hypoxia-inducible factor (HIF)-1. Gene therapy strategies based on this strategy are in development. Finally, tumor hypoxia can be exploited using live obligate anaerobes that have been genetically engineered to express enzymes that can activate nontoxic prodrugs into toxic chemotherapeutic agents.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 July 2015
                14 May 2015
                : 6
                : 19
                : 17147-17160
                Affiliations
                1 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
                2 Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
                3 Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
                4 Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
                5 Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
                6 Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
                7 LTTA Center, University of Ferrara, Ferrara, Italy
                Author notes
                Correspondence to: Luca M. Neri, luca.neri@ 123456unife.it
                Article
                4627298
                26003166
                f0493ada-5b18-4f33-9d9d-d196f810374c
                Copyright: © 2015 Simioni et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 February 2015
                : 5 May 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                hepatocellular carcinoma,nvp-bgt226,hypoxia,targeted therapies,pi3k/akt signaling

                Comments

                Comment on this article