13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fat, Sugar, and Bone Health: A Complex Relationship

      review-article
      , *
      Nutrients
      MDPI
      high-fat diet, high fructose, glucose, sucrose, bone microstructure, bone metabolism

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation between dietary nutrition and bone health might provide a basis for the development of strategies to improve bone health by modifying nutritional components.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus.

          Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyloxidase-mediated enzymatic immature divalent cross-links,mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links(advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of crosslink formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore,recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo assessment of bone quality in postmenopausal women with type 2 diabetes.

            Although patients with type 2 diabetes (T2D) are at significant risk for well-recognized diabetic complications, including macrovascular disease, retinopathy, nephropathy, and neuropathy, it is also clear that T2D patients are at increased risk for fragility fractures. Furthermore, fragility fractures in patients with T2D occur at higher bone mineral density (BMD) values compared to nondiabetic controls, suggesting abnormalities in bone material strength (BMS) and/or bone microarchitecture (bone "quality"). Thus, we performed in vivo microindentation testing of the tibia to directly measure BMS in 60 postmenopausal women (age range, 50-80 years) including 30 patients diagnosed with T2D for >10 years and 30 age-matched, nondiabetic controls. Regional BMD was measured by dual-energy X-ray absorptiometry (DXA); cortical and trabecular bone microarchitecture was assessed from high-resolution peripheral quantitative computed tomography (HRpQCT) images of the distal radius and tibia. Compared to controls, T2D patients had significantly lower BMS: unadjusted (-11.7%; p<0.001); following adjustment for body mass index (BMI) (-10.5%; p<0.001); and following additional adjustment for age, hypertension, nephropathy, neuropathy, retinopathy, and vascular disease (-9.2%; p=0.022). By contrast, after adjustment for confounding by BMI, T2D patients had bone microarchitecture and BMD that were not significantly different than controls; however, radial cortical porosity tended to be higher in the T2D patients. In addition, patients with T2D had significantly reduced serum markers of bone turnover (all p<0.001) compared to controls. Of note, in patients with T2D, the average glycated hemoglobin level over the previous 10 years was negatively correlated with BMS (r=-0.41; p=0.026). In conclusion, these findings represent the first demonstration of compromised BMS in patients with T2D. Furthermore, our results confirm previous studies demonstrating low bone turnover in patients with T2D and highlight the potential detrimental effects of prolonged hyperglycemia on bone quality. Thus, the skeleton needs to be recognized as another important target tissue subject to diabetic complications. © 2014 American Society for Bone and Mineral Research. © 2014 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationship of obesity with osteoporosis.

              The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. The objective of this study was to reevaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. We measured whole body fat mass, lean mass, percentage fat mass, body mass index, and bone mass in two large samples of different ethnicity: 1988 unrelated Chinese subjects and 4489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components with bone mass unadjusted or adjusted for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. In both Chinese and Caucasian subjects, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or percentage fat mass) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight were controlled. Increasing fat mass may not have a beneficial effect on bone mass.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                17 May 2017
                May 2017
                : 9
                : 5
                : 506
                Affiliations
                Laboratory of Endocrinology and Metabolism, Department of Endocrinology, State Key Laboratory of Biotherapy and cancer center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; tianzhuangzhuang924@ 123456126.com
                Author notes
                [* ]Correspondence: xijieyu@ 123456hotmail.com or xijieyu@ 123456scu.edu.cn ; Tel.: +86-28-8542-2362; Fax: +86-28-8542-3459
                Article
                nutrients-09-00506
                10.3390/nu9050506
                5452236
                28513571
                f065aead-6375-49ae-9f61-42de34b7421b
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 January 2017
                : 12 May 2017
                Categories
                Review

                Nutrition & Dietetics
                high-fat diet,high fructose,glucose,sucrose,bone microstructure,bone metabolism
                Nutrition & Dietetics
                high-fat diet, high fructose, glucose, sucrose, bone microstructure, bone metabolism

                Comments

                Comment on this article