29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A targeted lipidomics approach to the study of eicosanoid release in synovial joints

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Articular tissues are capable of producing a range of eicosanoid mediators, each of which has individual biological effects and may be affected by anti-inflammatory treatment. We set out to develop and evaluate a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) approach for the simultaneous analysis of multiple eicosanoid lipid mediators in equine synovial fluid (SF), and to illustrate its use for investigation of the in vivo effects of non-steroidal anti-inflammatory drug (NSAID) treatment.

          Methods

          Synovial fluid samples were obtained from normal joints of 6 adult horses at baseline (0 hr) and at 8, 24 and 168 hours after experimental induction of transient acute synovitis, with horses treated once daily with oral NSAID (meloxicam, 0.6 mg/kg) or placebo. Following solid-phase extraction, SF lipid mediator quantitation was based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis, and results were compared between disease states using linear discriminant analysis (LDA) and analysis of variance (ANOVA) with multiple comparisons corrections.

          Results

          Of a total of 23 mediators targeted, 14 could be reliably identified and quantified in SF samples based on detection of characteristic fragment ions at retention times similar to those of commercial standards. LDA analysis of baseline, 8, 24 and 168 hour synovial fluid samples revealed a separation of these groups into discrete clusters, reflecting dynamic changes in eicosanoid release over the course of synovitis. Prostaglandin (PG) E 2 was significantly lower in NSAID vs. placebo treated samples at all time points; PGE 1, 11-hydroxyeicosatetraenoic acid (11-HETE) and 13,14-dihydro-15keto PGF 2α were reduced at 8 and 24 hours by NSAID treatment; while 15-HETE, 6-keto PGF 1α, PGF 2α, 13,14-dihydro-15keto PGE 2 and thromboxane B 2 (TXB 2) were reduced at the 8 hour time point only. An interesting pattern was seen for Leukotriene B 4 (LTB 4), NSAID treatment causing an initial increase at 8 hours, but a significant reduction by 168 hours.

          Conclusions

          The described method allows a comprehensive analysis of synovial fluid eicosanoid profiles. Eicosanoid release in inflamed joints as well as differences between NSAID treated and placebo treated individuals are not limited to PGE 2 or to the early inflammatory phase.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil-derived leukotriene B4 is required for inflammatory arthritis

          Neutrophils serve as a vanguard of the acute innate immune response to invading pathogens. Neutrophils are also abundant at sites of autoimmune inflammation, such as the rheumatoid joint, although their pathophysiologic role is incompletely defined and relevant effector functions remain obscure. Using genetic and pharmacologic approaches in the K/BxN serum transfer model of arthritis, we find that autoantibody-driven erosive synovitis is critically reliant on the generation of leukotrienes, and more specifically on leukotriene B4 (LTB4), for disease induction as well as perpetuation. Pursuing the cellular source for this mediator, we find via reconstitution experiments that mast cells are a dispensable source of leukotrienes, whereas arthritis susceptibility can be restored to leukotriene-deficient mice by intravenous administration of wild-type neutrophils. These experiments demonstrate a nonredundant role for LTB4 in inflammatory arthritis and define a neutrophil mediator involved in orchestrating the synovial eruption.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis.

            Rheumatoid arthritis (RA) is a chronic inflammatory disorder leading to bone and cartilage destruction. A substantial body of evidence suggests that prostaglandin E2 (PGE2) contributes to the pathogenesis of RA, and nonsteroidal anti-inflammatory drugs, inhibitors of the synthesis of PGE2 and other prostanoids, continue to be used in the treatment of this disease. To begin to understand the mechanism by which prostaglandins modulate the pathophysiology of this disease, we examined mice lacking each of the four known PGE2 (EP) receptors after generation of collagen antibody-induced arthritis, an animal model of RA. Homozygous deletion of the EP1, EP2, or EP3 receptors did not affect the development of arthritis, whereas EP4 receptor-deficient mice showed decreased incidence and severity of disease. These animals also showed reduced inflammation as assessed by circulating IL-6 and serum amyloid A levels. Joint histopathology of EP4(-/-) animals revealed reduced bone destruction, proteoglycan loss, and type II collagen breakdown in cartilage compared with EP4(+/+) mice. Furthermore, liver and macrophages isolated from EP4(-/-) animals produced significantly less IL-1 beta and IL-6 than control samples. Thus, PGE2 contributes to disease progression at least in part by binding to the EP4 receptor. Antagonists of this receptor might therefore provide novel agents for the treatment of RA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry.

              Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFA) exhibit a range of tissue- and cell-specific activities in many physiological and pathological processes. Electrospray ionisation tandem mass spectrometry coupled to liquid chromatography (LC/ESI-MS/MS) is a sensitive, versatile analytical methodology for the qualitative and quantitative analysis of lipid mediators. Here we present an LC/ESI-MS/MS assay for the simultaneous analysis of twenty mono- and poly-hydroxy-fatty acid derivatives of linoleic, arachidonic, eicosapentaenoic and docosahexaenoic acids. The assay was linear over the concentration range 1-100 pg/microL, whilst the limits of detection and quantitation were 10-20 and 20-50 pg, respectively. The recovery of the extraction methodology varied from 76-122% depending on the metabolite. This system is useful for profiling a range of biochemically related potent mediators including the newly discovered resolvins and protectins, and their precursor hydroxyeicosapentaenoic and hydroxydocosahexaenoic acids, and, consequently, advance our understanding of the role of PUFA in health and disease. Copyright (c) 2007 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2011
                27 July 2011
                : 13
                : 4
                : R123
                Affiliations
                [1 ]Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM, Utrecht, The Netherlands
                [2 ]Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
                Article
                ar3427
                10.1186/ar3427
                3239362
                21794148
                f089896b-f8e9-4a0b-8c29-ef47050d521e
                Copyright ©2011 de Grauw et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 February 2011
                : 17 June 2011
                : 27 July 2011
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article