0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases

      , , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing use of computed tomography (CT) and cone beam computed tomography (CBCT) in oral and maxillofacial imaging has driven the development of deep learning and radiomics applications to assist clinicians in early diagnosis, accurate prognosis prediction, and efficient treatment planning of maxillofacial diseases. This narrative review aimed to provide an up-to-date overview of the current applications of deep learning and radiomics on CT and CBCT for the diagnosis and management of maxillofacial diseases. Based on current evidence, a wide range of deep learning models on CT/CBCT images have been developed for automatic diagnosis, segmentation, and classification of jaw cysts and tumors, cervical lymph node metastasis, salivary gland diseases, temporomandibular (TMJ) disorders, maxillary sinus pathologies, mandibular fractures, and dentomaxillofacial deformities, while CT-/CBCT-derived radiomics applications mainly focused on occult lymph node metastasis in patients with oral cancer, malignant salivary gland tumors, and TMJ osteoarthritis. Most of these models showed high performance, and some of them even outperformed human experts. The models with performance on par with human experts have the potential to serve as clinically practicable tools to achieve the earliest possible diagnosis and treatment, leading to a more precise and personalized approach for the management of maxillofacial diseases. Challenges and issues, including the lack of the generalizability and explainability of deep learning models and the uncertainty in the reproducibility and stability of radiomic features, should be overcome to gain the trust of patients, providers, and healthcare organizers for daily clinical use of these models.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping

          Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Radiomics in medical imaging—“how-to” guide and critical reflection

            Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features. The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical “how-to” guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Artificial Intelligence in Dentistry: Chances and Challenges

              The term “artificial intelligence” (AI) refers to the idea of machines being capable of performing human tasks. A subdomain of AI is machine learning (ML), which “learns” intrinsic statistical patterns in data to eventually cast predictions on unseen data. Deep learning is a ML technique using multi-layer mathematical operations for learning and inferring on complex data like imagery. This succinct narrative review describes the application, limitations and possible future of AI-based dental diagnostics, treatment planning, and conduct, for example, image analysis, prediction making, record keeping, as well as dental research and discovery. AI-based applications will streamline care, relieving the dental workforce from laborious routine tasks, increasing health at lower costs for a broader population, and eventually facilitate personalized, predictive, preventive, and participatory dentistry. However, AI solutions have not by large entered routine dental practice, mainly due to 1) limited data availability, accessibility, structure, and comprehensiveness, 2) lacking methodological rigor and standards in their development, 3) and practical questions around the value and usefulness of these solutions, but also ethics and responsibility. Any AI application in dentistry should demonstrate tangible value by, for example, improving access to and quality of care, increasing efficiency and safety of services, empowering and enabling patients, supporting medical research, or increasing sustainability. Individual privacy, rights, and autonomy need to be put front and center; a shift from centralized to distributed/federated learning may address this while improving scalability and robustness. Lastly, trustworthiness into, and generalizability of, dental AI solutions need to be guaranteed; the implementation of continuous human oversight and standards grounded in evidence-based dentistry should be expected. Methods to visualize, interpret, and explain the logic behind AI solutions will contribute (“explainable AI”). Dental education will need to accompany the introduction of clinical AI solutions by fostering digital literacy in the future dental workforce.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                January 2023
                December 29 2022
                : 13
                : 1
                : 110
                Article
                10.3390/diagnostics13010110
                f0c09508-ba42-4ad2-86ba-593a751f7bcd
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article