14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triphenylphosphonium Moiety Modulates Proteolytic Stability and Potentiates Neuroprotective Activity of Antioxidant Tetrapeptides in Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP) cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK) and D-arginine (YrFK) were synthesized and coupled with carboxyethyl-TPP (TPP-3) and carboxypentyl-TPP (TPP-6) units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl 2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

          Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluorescence probes used for detection of reactive oxygen species.

            Endogenously produced pro-oxidant reactive species are essential to life, being involved in several biological functions. However, when overproduced (e.g. due to exogenous stimulation), or when the levels of antioxidants become severely depleted, these reactive species become highly harmful, causing oxidative stress through the oxidation of biomolecules, leading to cellular damage that may become irreversible and cause cell death. The scientific research in the field of reactive oxygen species (ROS) associated biological functions and/or deleterious effects is continuously requiring new sensitive and specific tools in order to enable a deeper insight on its action mechanisms. However, reactive species present some characteristics that make them difficult to detect, namely their very short lifetime and the variety of antioxidants existing in vivo, capable of capturing these reactive species. It is, therefore, essential to develop methodologies capable of overcoming this type of obstacles. Fluorescent probes are excellent sensors of ROS due to their high sensitivity, simplicity in data collection, and high spatial resolution in microscopic imaging techniques. Hence, the main goal of the present paper is to review the fluorescence methodologies that have been used for detecting ROS in biological and non-biological media.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.

              Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                19 February 2018
                2018
                : 9
                : 115
                Affiliations
                [1] 1Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University , Kazan, Russia
                [2] 2Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey
                Author notes

                Edited by: Victor Erokhin, Istituto Materiali per Elettronica e Magnetismo IMEM-CNR, Italy

                Reviewed by: Andrey Y. Abramov, UCL Institute of Neurology, United Kingdom; Medardo Hernández, Complutense University of Madrid, Spain

                *Correspondence: Timur I. Abdullin, tabdulli@ 123456gmail.com ; timur.abdullin@ 123456kpfu.ru

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00115
                5827532
                f113e542-906e-429e-8af8-b2d06e91af06
                Copyright © 2018 Akhmadishina, Garifullin, Petrova, Kamalov and Abdullin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 November 2017
                : 31 January 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 65, Pages: 13, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                aromatic-cationic oligopeptides,triphenylphosphonium compounds,antioxidant activity,fenton reaction,neuronal cells,oxidative damage,cytoprotection,protease stability

                Comments

                Comment on this article

                scite_

                Similar content226

                Cited by5

                Most referenced authors1,205