14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral infections acquired indoors through airborne, droplet or contact transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND: Indoor human environments, including homes, offices, schools, workplaces, transport systems and other settings, often harbor potentially unsafe microorganisms. Most previous studies of bioaerosols in indoor environments have addressed contamination with bacteria or fungi. Reports on the presence of viral aerosols in indoor air are scarce, however, despite the fact that viruses are probably the most common cause of infection acquired indoor. OBJECTIVE: This review discusses the most common respiratory (influenza viruses, rhino-viruses, coronaviruses, adenoviruses, respiratory syncytial viruses, and enteroviruses) and gastrointestinal (noroviruses) viral pathogens which can be easily transmitted in indoor environments. RESULTS: The vast majority of studies reviewed here concern hospital and other health facilities where viruses are a well-known cause of occupational and nosocomial infections. Studies on other indoor environments, on the other hand, including homes, non-industrial workplaces and public buildings, are scarce. CONCLUSIONS: The lack of regulations, threshold values and standardized detection methods for viruses in indoor environments, make both research and interpretation of results difficult in this field, hampering infection control efforts. Further research will be needed to achieve a better understanding of virus survival in aerosols and on surfaces, and to elucidate the relationship between viruses and indoor environmental characteristics.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Review of Aerosol Transmission of Influenza A Virus

          Concerns about the likely occurrence of an influenza pandemic in the near future are increasing. The highly pathogenic strains of influenza A (H5N1) virus circulating in Asia, Europe, and Africa have become the most feared candidates for giving rise to a pandemic strain. Several authors have stated that large-droplet transmission is the predominant mode by which influenza virus infection is acquired ( 1 – 3 ). As a consequence of this opinion, protection against infectious aerosols is often ignored for influenza, including in the context of influenza pandemic preparedness. For example, the Canadian Pandemic Influenza Plan and the US Department of Health and Human Services Pandemic Influenza Plan ( 4 , 5 ) recommend surgical masks, not N95 respirators, as part of personal protective equipment (PPE) for routine patient care. This position contradicts the knowledge on influenza virus transmission accumulated in the past several decades. Indeed, the relevant chapters of many reference books, written by recognized authorities, refer to aerosols as an important mode of transmission for influenza ( 6 – 9 ). In preparation for a possible pandemic caused by a highly lethal virus such as influenza A (H5N1), making the assumption that the role of aerosols in transmission of this virus will be similar to their role in the transmission of known human influenza viruses would seem rational. Because infection with influenza A (H5N1) virus is associated with high death rates and because healthcare workers cannot as yet be protected by vaccination, recommending an enhanced level of protection, including the use of N95 respirators as part of PPE, is important. Following are a brief review of the relevant published findings that support the importance of aerosol transmission of influenza and a brief discussion on the implications of these findings on pandemic preparedness. Influenza Virus Aerosols By definition, aerosols are suspensions in air (or in a gas) of solid or liquid particles, small enough that they remain airborne for prolonged periods because of their low settling velocity. For spherical particles of unit density, settling times (for a 3-m fall) for specific diameters are 10 s for 100 μm, 4 min for 20 μm, 17 min for 10 μm, and 62 min for 5 μm; particles with a diameter 6-μm diameter are trapped increasingly in the upper respiratory tract ( 12 ); no substantial deposition in the lower respiratory tract occurs at >20 μm ( 11 , 12 ). Many authors adopt a size cutoff of 10–20 μm will settle rapidly, will not be deposited in the lower respiratory tract, and are referred to as large droplets ( 10 – 12 ). Coughing or sneezing generates a substantial quantity of particles, a large number of which are 40%. The increased survival of influenza virus in aerosols at low relative humidity has been suggested as a factor that accounts for the seasonality of influenza ( 15 , 16 ). The sharply increased decay of infectivity at high humidity has also been observed for other enveloped viruses (e.g., measles virus); in contrast, exactly the opposite relationship has been shown for some nonenveloped viruses (e.g., poliovirus) ( 11 , 15 , 16 ). Experimental Influenza Infection Experimental infection studies permit the clear separation of the aerosol route of transmission from transmission by large droplets. Laboratory preparation of homogeneous small particle aerosols free of large droplets is readily achieved ( 13 , 18 ). Conversely, transmission by large droplets without accompanying aerosols can be achieved by intranasal drop inoculation ( 13 ). Influenza infection has been documented by aerosol exposure in the mouse model, the squirrel monkey model, and human volunteers ( 12 , 13 , 17 – 19 ). Observations made during experimental infections with human volunteers are particularly interesting and relevant. In studies conducted by Alford and colleagues ( 18 ), volunteers were exposed to carefully titrated aerosolized influenza virus suspensions by inhaling 10 L of aerosol through a face mask. The diameter of the aerosol particles was 1 μm–3 μm. Demonstration of infection in participants in the study was achieved by recovery of infectious viruses from throat swabs, taken daily, or by seroconversion, i.e., development of neutralizing antibodies. The use of carefully titrated viral stocks enabled the determination of the minimal infectious dose by aerosol inoculation. For volunteers who lacked detectable neutralizing antibodies at the onset, the 50% human infectious dose (HID50) was 0.6–3.0 TCID50, if one assumes a retention of 60% of the inhaled particles (18). In contrast, the HID50 measured when inoculation was performed by intranasal drops was 127–320 TCID50 ( 13 ). Additional data from experiments conducted with aerosolized influenza virus (average diameter 1.5 μm) showed that when a dose of 3 TCID50 was inhaled, ≈1 TCID50 only was deposited in the nose ( 12 ). Since the dose deposited in the nose is largely below the minimal dose required by intranasal inoculation, this would indicate that the preferred site of infection initiation during aerosol inoculation is the lower respiratory tract. Another relevant observation is that whereas the clinical symptoms initiated by aerosol inoculation covered the spectrum of symptoms seen in natural infections, the disease observed in study participants infected experimentally by intranasal drops was milder, with a longer incubation time and usually no involvement of the lower respiratory tract ( 13 , 20 ). For safety reasons, this finding led to the adoption of intranasal drop inoculation as the standard procedure in human experimental infections with influenza virus ( 13 ). Additional support for the view that the lower respiratory tract (which is most efficiently reached by the aerosol route) is the preferred site of infection is provided by studies on the use of zanamivir for prophylaxis. In experimental settings, intranasal zanamivir was protective against experimental inoculation with influenza virus in intranasal drops ( 21 ). However, in studies on prophylaxis of natural infection, intranasally applied zanamivir was not protective ( 22 ), whereas inhaled zanamivir was protective in one study ( 23 ) and a protective effect approached statistical significance in another study ( 22 ). These experiments and observations strongly support the view that many, possibly most, natural influenza infections occur by the aerosol route and that the lower respiratory tract may be the preferred site of initiation of the infection. Epidemiologic Observations In natural infections, the postulated modes of transmission have included aerosols, large droplets, and direct contact with secretions or fomites because the virus can remain infectious on nonporous dry surfaces for >(January 2006) recommends FFP2 respirators (equivalent to N95 respirators) (http://www.splf.org/s/IMG/pdf/plan-grip-janvier06.pdf). Given the scientific evidence that supports the occurrence of aerosol transmission of influenza, carefully reexamining current recommendations for PPE equipment would appear necessary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Norwalk Virus Shedding after Experimental Human Infection

            Noroviruses are the most common cause of epidemic gastroenteritis in the United States ( 1 ). Although in vitro replication systems for these viruses have recently been described ( 2 , 3 ), human noroviruses cannot readily be grown in cell culture, and no small animal model of human norovirus infection is available. Much of what is known about these viruses has by necessity been learned from experimental human infection and from observational studies of naturally acquired infection. Norwalk virus is the prototype strain in the genus Norovirus, and many of the human experimental infection studies have used this strain ( 4 – 9 ). We describe the duration and magnitude of virus shedding in persons infected with Norwalk virus after experimental inoculation. Materials and Methods Virus Inoculum Liquid feces from persons who participated in a previous Norwalk virus challenge study ( 8 ) were screened to identify samples with high concentrations of Norwalk virus RNA (>107 reverse transcription–PCR [RT-PCR] U/mL). The participants were recontacted and screened for health (results within normal limits for liver function, tuberculosis skin test [negative], and chest radiographs; negative serologic test results for hepatitis A, B, and C, retroviruses [HIV-1, HIV-2, and human T-lymphotropic virus 1 and 2], and syphilis [nonreactive rapid plasma regain]). The new challenge inoculum (lot 42399) was prepared from liquid feces of 1 participant by clarification, centrifugation, and serial filtration through filters with progressively smaller pore size to a final 0.45-μm filter size. The inoculum, which contained no other enteric viruses or adventitious agents, was packaged and stored at –80°C. Challenge Protocol Challenge studies were conducted from September 2004 through October 2006. Healthy adults (18–50 years of age) provided informed consent and successfully completed a test of understanding. In addition, eligible persons were secretor positive (because secretor-negative persons are resistant to Norwalk virus infection; 9 , 10 ), had screening laboratory study results that were within normal limits (liver and renal function, blood counts), had negative serologic results for hepatitis and HIV, had no serious chronic diseases, had no history of nonbacterial gastroenteritis within 3 months of inoculation or of bacterial or protozoal enteric infection within 1 month (based on 3 negative enteric cultures and fecal ova and parasite studies in the 4-week preinoculation screening period), were not exposed to persons considered to be at risk for more severe norovirus infection (e.g., immunocompromised patients, the elderly, and children), and were not employed in jobs identified as having high risk for transmission to other persons (e.g., food service, healthcare, and airline industries). On the day of inoculation, participants were admitted to the Baylor College of Medicine General Clinical Research Center and orally received different dosages of inoculum (10-fold dilutions ranging from 4.8 to 4,800 RT-PCR units) or placebo in the early evening. Inoculated participants remained in the Center for a minimum of 96 hours and at discharge had experienced no watery feces or vomiting for at least 18 hours. Participants’ clinical signs and symptoms were evaluated every 4 hours while they were in the Center, and all fecal samples were collected and refrigerated immediately. Within 24 hours of collection, the samples were transported to the laboratory for processing and stored at –70oC until analyzed. After patient discharge, all fecal samples were collected daily for 21 days and then weekly for up to 5 additional weeks (for a total observation time of up to 8 weeks postinoculation). The samples were delivered to the laboratory within a day of collection and were processed and stored as described above. Participants were educated about the importance of hand washing and hand hygiene at the beginning of the study, and these concepts were reinforced at each study visit. The clinical protocol was reviewed and approved by the Institutional Review Board at Baylor College of Medicine, and an Investigational New Drug application describing the clinical protocol and study inoculum was reviewed by the US Food and Drug Administration. Laboratory Studies Norwalk virus–specific antigen was detected by sandwich ELISA, using Norwalk virus–specific antiserum, as previously described ( 8 ), and Norwalk virus–specific antibody was detected by ELISA, using Norwalk virus–like particles as antigen, as previously described ( 8 ). Norwalk virus RNA was detected in fecal specimens by using either an immunomagnetic capture (IMC) RT-PCR assay ( 11 ) or quantitated by real-time RT-PCR (qRT-PCR) with RNA transcripts as a standard ( 2 ). The primers used for the IMC RT-PCR assay were the antisense Norwalk virus p35 (5′-CTT GTT GGT TTG AGG CCA TAT-3′) and the sense Norwalk virus p36 (5′-ATA AAA GTT GGC ATG AAC A-3′); probe was a 5′ digoxigenin-labeled Norwalk virus p69 (5′-GGC CTG CCA TCT GGA TTG CC-3′). For the qRT-PCR assay, a 10% fecal sample was diluted 1,000-fold and heated to 95oC for 5 min ( 12 ); 20 μL of heated sample was analyzed in duplicate wells. The primers for the qRT-PCR assay were the antisense Norwalk virus p165 (5′-CAT AAT CAC CTA CAT CCA TCT CAG ATG-3′, which is complementary to Norwalk virus nt 4689–4715) and the sense primer Norwalk virus p166 (5′-CGG CCT CAC CAG AAT TGG-3′, which is complementary to Norwalk virus nt 4641–4658); the probe was Norwalk virus p167 (5′-FAM/CGA GGT TGT GGC CCA AGA TTT GCT AG/TAMRA-3′, which is complementary to nt 4660–4685). For determination of a virus titer, both wells had to show amplification. The limits of detection for the IMC RT-PCR and qRT-PCR assays were ≈15 × 103 and ≈40 × 106 copies/g feces, respectively. Definitions Infection was defined as seroresponse (4-fold rise in titer from preinoculation baseline to 30-day serum sample, as measured by ELISA) or fecal virus excretion as detected by RT-PCR or presence of antigen. Viral gastroenteritis was defined as illness with moderate diarrhea (alone) for any continuous 24-hour period (moderate diarrhea is >200 g of watery feces that immediately take the shape of the collection container) or 1 vomiting episode plus 1 of the following: abdominal cramps or pain, nausea, bloating, loose feces (if not fulfilling the definition of diarrhea), fever (oral temperature >37.6°C), myalgia, or headache. Results A total of 16 persons inoculated with Norwalk virus met the criteria for having Norwalk virus infection. Of these, 11 (69%) met the predefined definition for viral gastroenteritis. The 5 who did not meet this predefined definition had >3 symptoms that did not include vomiting or >200 g of watery diarrhea. All 11 participants with viral gastroenteritis had abdominal cramps, nausea, and vomiting; 5 of these participants also had >200 g of watery diarrhea, and 1 had 37.6oC (n = 4), and chills (n = 3). The 5 participants who did not fulfill the criteria for gastroenteritis had nausea (n = 5), anorexia (n = 5), malaise (n = 4), abdominal cramps (n = 3), myalgia (n = 3), headache (n = 3), temperature >37.6oC (n = 2), chills (n = 2), and watery diarrhea 4-fold rise in serum antibody level, and all but 2 also shed virus as measured by antigen ELISA (Table). Virus shedding as measured by IMC RT-PCR was first detected a median of 36 hours (range 18–110 hours) after inoculation and lasted a median of 28 days after inoculation (range 13–56 days). Norwalk virus was detected in fecal samples of 7 participants 3–14 hours before onset of any clinical signs or symptoms. Presymptomatic shedding was more common in persons who did not meet the definition of clinical gastroenteritis than in those who did (4/5 vs. 3/11, respectively, p = 0.11, 2-tailed Fisher exact test). Virus shedding as measured by antigen ELISA was first detected ≈33 hours (median 42 hours) after inoculation and was last detected 10 days (median 7 days) after inoculation. Median values of the onset and resolution of virus shedding, as measured by IMC RT-PCR or antigen ELISA, were similar for the participants who had clinical gastroenteritis compared with those of persons who did not meet the definition of gastroenteritis (Table). Table Fecal virus shedding among 16 participants inoculated with Norwalk virus* Participant no. Estimated Norwalk virus inoculum dose (RT-PCR units) First–last study days† postinoculation when symptoms present First–last study days IMC 
RT-PCR positive Day peak virus titer (character of feces) Peak qRT-PCR virus titer (log10/g) First–last study days postinoculation when antigen positive Met clinical definition of gastroenteritis Had diarrhea and vomiting 706 4,800 2 2–28‡ 2 (liquid) 11.1 2–9 707 4,800 2–4 1–30‡ 2 (liquid) 9.5 4–8 710 4,800 1–2 2–30‡ 5 (solid) 10.9 2–7 722 48 2 2–48 4 (solid) 11.7 2–8 724 4.8 2–3 2–56 3 (solid) 11.4 2–6 Had vomiting only 701 4,800 1–2 1–29‡ 4 (solid) 10.8 3–10 720§ 48 2 2–56 4 (solid) 11.5 2–9 721 48 1–3 2–21 4 (solid) 11.7 2–10 723 48 2 1–50 4 (solid) 12.2 2–6 731 4.8 2–3 5–10 5 (solid) 10.0 None 732 4.8 2–3 2–15 3 (solid) 11.9 2–6 Median – 2 2–30‡ 4 (solid) 11.4 2–8 Did not meet clinical definition of gastroenteritis 703 4,800 2–3 1–32‡ 2 (solid) 10.7 2–9 704 4,800 2–3 4–21‡ 5 (solid) 9.2 5–7 715§ 48 2–3 1–28 3 (solid) 11.7 2–5 716§ 48 2–3 1–20 4 (unformed) 10.1 3–7 717 48 3 4–13 4 (solid) 9.3 None Median – 2–3 1–21‡ 4 (solid) 10.1 2–7 *RT–PCR, reverse transcription–PCR; IMC, immunomagnetic capture; qRT-PCR, quantitative PCR.
†Study days are reported as calendar days; study day 1 began ≈5–6 h postinoculation.
‡Fecal samples only collected for 30 d postinoculation.
§Watery feces with mass 100 × 106 copies/g until at least day 14 (Figure 1). Persons who met the clinical definition of gastroenteritis had a higher median peak of virus shedding than those who did not have gastroenteritis (250 × 109 vs. 12 × 109 genomic copies/g feces, p = 0.08, Wilcoxon rank sum), and the average total number of viral genomic copies measured in the feces over the first 2 weeks after inoculation also was higher in the clinical gastroenteritis group (1013.3 vs. 1012.4, p = 0.056, Student t test). The virus concentrations in feces collected later after inoculation were low (range 225,000–40 × 106 genomic copies/g). Correlation between virus titer in feces and optical density results obtained in the antigen ELISA was strong (r = 0.823, Pearson correlation, p 1011 norovirus copies/g feces, whereas the peak fecal virus titer observed by Ozawa et al. ( 18 ) in symptomatic and asymptomatic food handlers was ≈10-fold lower. Each of these studies was of persons with naturally acquired norovirus infection. However, the median peak viral load observed in our study (1011) was much higher than the 107–108 median viral loads reported in the prior studies ( 17 , 18 ). Lee et al. ( 19 ) noted higher viral loads in patients who had more prolonged symptoms (>4 days) associated with infection caused by GII.4 norovirus. Amar et al. ( 20 ) also reported viral loads to be higher in persons who had symptomatic gastroenteritis than in those who had been asymptomatic for at least 3 weeks. Our findings suggest that clinical gastroenteritis was associated with higher peak virus shedding and higher total virus shedding during the first 2 weeks after inoculation. Although we did not see an association of peak virus titer with symptom duration, the median duration of symptoms averaged only ≈1 day in our study. Potential reasons for the different results observed in other studies include the manner in which samples were collected (single samples vs. serial collection), the real-time assays used (generic assays designed to be broadly reactive vs. assay designed specifically for Norwalk virus detection), virulence of the infecting strains, differences in the populations studied (e.g., age, immune status), and the small number of infected persons who did not have clinical gastroenteritis in our study. The development of more sensitive methods to detect noroviruses has been associated with a corresponding increase in the duration of recognized virus shedding ( 1 , 8 ). For example, Rockx et al. ( 21 ) found norovirus in fecal samples for >3 weeks in ≈25% of infected persons, and Murata et al. ( 22 ) found norovirus in fecal samples for up to 6 weeks in infected infants. In contrast, at least half of the participants in our study still had Norwalk virus in fecal samples after 4 weeks and 2 had virus still present at 8 weeks; we cannot exclude the possibility that these 2 persons shed for a longer period. Determination of whether the virus is still infectious must await the development of more sensitive and reproducible methods for norovirus cultivation than are currently available ( 23 ).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of influenza: implications for control in health care settings.

              Annual influenza epidemics in the United States result in an average of >36,000 deaths and 114,000 hospitalizations. Influenza can spread rapidly to patients and health care personnel in health care settings after influenza is introduced by visitors, staff, or patients. Influenza outbreaks in health care facilities can have potentially devastating consequences, particularly for immunocompromised persons. Although vaccination of health care personnel and patients is the primary means to prevent and control outbreaks of influenza in health care settings, antiviral influenza medications and isolation precautions are important adjuncts. Although droplet transmission is thought to be the primary mode of influenza transmission, limited evidence is available to support the relative clinical importance of contact, droplet, and droplet nuclei (airborne) transmission of influenza. In this article, the results of studies on the modes of influenza transmission and their relevant isolation precautions are reviewed.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                aiss
                Annali dell'Istituto Superiore di Sanità
                Ann. Ist. Super. Sanità
                Istituto Superiore di Sanità (Roma )
                0021-2571
                June 2013
                : 49
                : 2
                : 124-132
                Article
                S0021-25712013000200004
                10.4415/ANN_13_02_03
                f199ce72-1646-4ab7-abe4-9070a6c75369

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Public Health

                Self URI (journal page): http://www.scielosp.org/scielo.php?script=sci_serial&pid=0021-2571&lng=en
                Categories
                Health Care Sciences & Services

                Health & Social care
                viruses,indoor,droplet,droplet nuclei,fomites
                Health & Social care
                viruses, indoor, droplet, droplet nuclei, fomites

                Comments

                Comment on this article