119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ameba-associated Microorganisms and Diagnosis of Nosocomial Pneumonia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ameba-associated microorganisms should be suspected when conventional microbiologic test results are negative.

          Abstract

          To elucidate the role of ameba-associated microorganisms (AAMs) as etiologic agents of pneumonia, we screened for Legionella spp., Parachlamydia acanthamoeba, Afipia sp., Bosea spp., Bradyrhizobium spp., Mesorhizobium amorphae, Rasbo bacterium, Azorhizobium caulinodans, Acanthamoeba polyphaga mimivirus, and conventional microorganisms in 210 pneumonia patients in intensive-care units by using culture, polymerase chain reaction, and serologic testing. These resulted in 59 diagnoses in 40 patients. AAMs and non-AAMs were implicated in 10.5% of the patients. The infectious agents were identified in 15 patients: Acanthamoeba polyphaga mimivirus, 8; Legionella pneumophila, 3; L. anisa, 1; Parachlamydia sp., 1; Bosea massiliensis, L. worsleiensis, L. quinlivanii, and L. rubrilucens, 1; and M. amorphae and R. bacterium, 1. A. polyphaga mimivirus was the fourth most common etiologic agent, with a higher seroprevalence than noted in healthy controls. This finding suggested its clinical relevance. Therefore, AAM might cause nosocomial pneumonia and should be suspected when conventional microbiologic results are negative.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The 1.2-megabase genome sequence of Mimivirus.

          We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A giant virus in amoebae.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microorganisms resistant to free-living amoebae.

              Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                February 2006
                : 12
                : 2
                : 248-255
                Affiliations
                [* ]Centre Hospitalier Universitaire La Timone, Marseille, France;
                []Université de la Méditerranée, Marseille, France;
                []Hôpital Sainte-Marguerite, Marseille, France
                Author notes
                Address for correspondence: Didier Raoult, Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; fax: 33-4-91-83-03-90; email: didier.raoult@ 123456medecine.univ-mrs.fr
                Article
                05-0434
                10.3201/eid1202.050434
                3373093
                16494750
                f1db9853-6f22-4a8d-bfca-6540fa81b0e4
                History
                Categories
                Research
                Research

                Infectious disease & Microbiology
                intensive care unit,laboratory techniques and procedures,prospective studies,research,ameba-associated microorganisms,pneumonia

                Comments

                Comment on this article