2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MALDI-TOF Mass Spectrometry as a Rapid Screening Alternative for Non-tuberculous Mycobacterial Species Identification in the Veterinary Laboratory

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-tuberculous mycobacteria (NTM) are difficult to identify by biochemical and genetic methods due to their microbiological properties and complex taxonomy. The development of more efficient and rapid methods for species identification in the veterinary microbiological laboratory is, therefore, of great importance. Although MALDI-TOF Mass Spectrometry (MS) has become a promising tool for the identification of NTM species in human clinical practise, information regarding its performance on veterinary isolates is scarce. This study assesses the capacity of MALDI-TOF MS to identify NTM isolates ( n = 75) obtained from different animal species. MALDI-TOF MS identified 76.0% ( n = 57) and 4% ( n = 3) of the isolates with high and low confidence, respectively, in agreement with the identification achieved by Sanger sequencing of housekeeping genes (16S rRNA, hsp65, and rpoB). Thirteen isolates (17.3%) were identified by Sanger sequencing to the complex level, indicating that these may belong to uncharacterised species. MALDI-TOF MS approximated low confidence identifications toward closely related mycobacterial groups, such as the M. avium or M. terrae complexes. Two isolates were misidentified due to a high similarity between species or due to the lack of spectra in the database. Our results suggest that MALDI-TOF MS can be used as an effective alternative for rapid screening of mycobacterial isolates in the veterinary laboratory and potentially for the detection of new NTM species. In turn, Sanger sequencing could be implemented as an additional method to improve identifications in species for which MALDI-TOF MS identification is limited or for further characterisation of NTM species.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.

          Widespread use of DNA restriction fragment length polymorphism (RFLP) to differentiate strains of Mycobacterium tuberculosis to monitor the transmission of tuberculosis has been hampered by the need to culture this slow-growing organism and by the level of technical sophistication needed for RFLP typing. We have developed a simple method which allows simultaneous detection and typing of M. tuberculosis in clinical specimens and reduces the time between suspicion of the disease and typing from 1 or several months to 1 or 3 days. The method is based on polymorphism of the chromosomal DR locus, which contains a variable number of short direct repeats interspersed with nonrepetitive spacers. The method is referred to as spacer oligotyping or "spoligotyping" because it is based on strain-dependent hybridization patterns of in vitro-amplified DNA with multiple spacer oligonucleotides. Most of the clinical isolates tested showed unique hybridization patterns, whereas outbreak strains shared the same spoligotype. The types obtained from direct examination of clinical samples were identical to those obtained by using DNA from cultured M. tuberculosis. This novel preliminary study shows that the novel method may be a useful tool for rapid disclosure of linked outbreak cases in a community, in hospitals, or in other institutions and for monitoring of transmission of multidrug-resistant M. tuberculosis. Unexpectedly, spoligotyping was found to differentiate M. bovis from M. tuberculosis, a distinction which is often difficult to make by traditional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera

            The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the “Tuberculosis-Simiae,” “Terrae,” “Triviale,” “Fortuitum-Vaccae,” and “Abscessus-Chelonae” clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the “Abscessus-Chelonae” clade forms the deepest branching lineage and does not form a monophyletic grouping with the “Fortuitum-Vaccae” clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the “Tuberculosis-Simiae” clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the “Fortuitum-Vaccae,” “Terrae,” “Triviale,” and “Abscessus-Chelonae” clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria.

              Mycobacteria are the causative organisms for diseases such as tuberculosis (TB), leprosy, Buruli ulcer, and pulmonary nontuberculous mycobacterial disease, to name the most important ones. In 2015, globally, almost 10 million people developed TB, and almost half a million patients suffered from its multidrug-resistant form. In 2016, a total of 9,287 new TB cases were reported in the United States. In 2015, there were 174,608 new case of leprosy worldwide. India, Brazil, and Indonesia reported the most leprosy cases. In 2015, the World Health Organization reported 2,037 new cases of Buruli ulcer, with most cases being reported in Africa. Pulmonary nontuberculous mycobacterial disease is an emerging public health challenge. The U.S. National Institutes of Health reported an increase from 20 to 47 cases/100,000 persons (or 8.2% per year) of pulmonary nontuberculous mycobacterial disease among adults aged 65 years or older throughout the United States, with 181,037 national annual cases estimated in 2014. This review describes contemporary methods for the laboratory diagnosis of mycobacterial diseases. Furthermore, the review considers the ever-changing health care delivery system and stresses the laboratory's need to adjust and embrace molecular technologies to provide shorter turnaround times and a higher quality of care for the patients who we serve.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                28 January 2022
                2022
                : 9
                : 827702
                Affiliations
                [1] 1VISAVET Health Surveillance Center, Universidad Complutense de Madrid , Madrid, Spain
                [2] 2Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid , Madrid, Spain
                Author notes

                Edited by: Srinand Sreevatsan, Michigan State University, United States

                Reviewed by: Danijela Horvatek Tomic, University of Zagreb, Croatia; Filip Boyen, Ghent University, Belgium

                *Correspondence: Beatriz Romero bromerom@ 123456ucm.es

                This article was submitted to Veterinary Epidemiology and Economics, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2022.827702
                8831857
                f1ddbf3d-3eba-47bb-979b-a2ab60db6360
                Copyright © 2022 Lorente-Leal, Liandris, Bezos, Pérez-Sancho, Romero and Juan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 December 2021
                : 03 January 2022
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 50, Pages: 9, Words: 6545
                Categories
                Veterinary Science
                Brief Research Report

                maldi-tof ms,non-tuberculous mycobacteria (ntm),mycobacteria,sanger sequencing,identification,veterinary samples,screening

                Comments

                Comment on this article