38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of blue light on photoreceptors in a live retinal explant system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The present study was performed to investigate the early effects of blue light irradiation of photoreceptors in retinal explant cultures.

          Methods

          Murine retinal explant cultures were irradiated with visible blue light (405 nm) with an output power of 1 mW/cm2. Dihydroethidium was used to determine the production of reactive oxygen species. Morphological alterations of photoreceptor outer segments were determined by live imaging microscopy with mitochondrial dye JC-1. Transmission and scanning electron microscopy were used for ultrastructural evaluations. Cell death in the retina was assessed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assay method.

          Results

          Live retinal explants displayed an increase in reactive oxygen species production, as revealed by fluorescent dihydroethidium products in photoreceptor cells after 30 min of blue light exposure. After 3 h of exposure, blue light caused disorganization of the normally neatly stacked outer segments of living photoreceptors. Ultrastructural analysis revealed breaks in the cell membrane surrounding the outer segments, especially in the middle section. The outer segments appeared tortuous, and the lamellar structures had been disrupted. TUNEL-staining revealed that long-term blue light exposure induced photoreceptor cell death.

          Conclusions

          In vitro blue light irradiation of retinal explants is a suitable model system for investigating early ultrastructural changes, as well as damage that leads to cell death in photoreceptor cells.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Retinal light damage: mechanisms and protection.

          By its action on rhodopsin, light triggers the well-known visual transduction cascade, but can also induce cell damage and death through phototoxic mechanisms - a comprehensive understanding of which is still elusive despite more than 40 years of research. Herein, we integrate recent experimental findings to address several hypotheses of retinal light damage, premised in part on the close anatomical and metabolic relationships between the photoreceptors and the retinal pigment epithelium. We begin by reviewing the salient features of light damage, recently joined by evidence for retinal remodeling which has implications for the prognosis of recovery of function in retinal degenerations. We then consider select factors that influence the progression of the damage process and the extent of visual cell loss. Traditional, genetically modified, and emerging animal models are discussed, with particular emphasis on cone visual cells. Exogenous and endogenous retinal protective factors are explored, with implications for light damage mechanisms and some suggested avenues for future research. Synergies are known to exist between our long term light environment and photoreceptor cell death in retinal disease. Understanding the molecular mechanisms of light damage in a variety of animal models can provide valuable insights into the effects of light in clinical disorders and may form the basis of future therapies to prevent or delay visual cell loss. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.

            Human retinal dystrophies and degenerations and light-induced retinal degenerations in animal models are sharing an important feature: visual cell death by apoptosis. Studying apoptosis may thus provide an important handle to understand mechanisms of cell death and to develop potential rescue strategies for blinding retinal diseases. Apoptosis is the regulated elimination of individual cells and constitutes an almost universal principle in developmental histogenesis and organogenesis and in the maintenance of tissue homeostasis in mature organs. Here we present an overview on molecular and cellular mechanisms of apoptosis and summarize recent developments. The classical concept of apoptosis being initiated and executed by endopeptidases that cleave proteins at aspartate residues (Caspases) can no longer be held in its strict sense. There is an increasing number of caspase-independent pathways, involving apoptosis inducing factor, endonuclease G, poly-(ADP-ribose) polymerase-1, proteasomes, lysosomes and others. Similarly, a considerable number and diversity of pro-apoptotic stimuli is being explored. We focus on apoptosis pathways in our model: light-damage induced by short exposures to bright white light and highlight those essential conditions known so far in the apoptotic death cascade. In our model, the visual pigment rhodopsin is the essential mediator of the initial death signal. The rate of rhodopsin regeneration defines damage threshold in different strains of mice. This rate depends on the level of the pigment epithelial protein RPE65, which in turn depends on the amino acid (leucine or methionine) encoded at position 450. Activation of the pro-apoptotic transcription factor AP-1 constitutes an essential death signal. Inhibition of rhodopsin regeneration as well as suppression of AP-1 confers complete protection in our system. Furthermore, we describe observations in other light-damage systems as well as characteristics of animal models for RP with particular emphasis on rescue strategies. There is a vast array of different neuroprotective cytokines that are applied in light-damage and RP animal models and show diverging efficacy. Some cytokines protect against light damage as well as against RP in animal models. At present, the mechanisms of neuroprotective/anti-apoptotic action represent a "black box" which needs to be explored. Even though acute light damage and RP animal models show different characteristics in many respects, we hope to gain insights into apoptotic mechanisms for both conditions by studying light damage and comparing results with those obtained in animal models. In our view, future directions may include the investigation of different apoptotic pathways in light damage (and inherited animal models). Emphasis should also be placed on mechanisms of removal of dead cells in apoptosis, which appears to be more important than initially recognized. In this context, a stimulating concept concerns age-related macular degeneration, where an insufficiency of macrophages removing debris that results from cell death and photoreceptor turnover might be an important pathogenetic event. In acute light damage, the appearance of macrophages as well as phagocytosis by the retinal pigment epithelium are a consistent and conspicuous feature, which lends itself to the study of removal of cellular debris in apoptosis. We are aware of the many excellent reviews and the earlier work paving the way to our current knowledge and understanding of retinal degeneration, photoreceptor apoptosis and neuroprotection. However, we limited this review mainly to work published in the last 7-8 years and we apologize to all the researchers which have contributed to the field but are not cited here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors.

              1. We have undertaken a theoretical analysis of the steps contributing to the phototransduction cascade in vertebrate photoreceptors. We have explicitly considered only the activation steps, i.e. we have not dealt with the inactivation reactions. 2. From the theoretical analysis we conclude that a single photoisomerization leads to activation of the phosphodiesterase (PDE) with a time course which approximates a delayed ramp; the delay is contributed by several short first-order delay stages. 3. We derive a method for extracting the time course of PDE activation from the measured electrical response, and we apply this method to recordings of the photoresponse from salamander rods. The results confirm the prediction that the time course of PDE activation is a delayed ramp, with slope proportional to light intensity; the initial delay is about 10-20 ms. 4. We derive approximate analytical solutions for the electrical response of the photoreceptor to light, both for bright flashes (isotropic conditions) and for single photons (involving longitudinal diffusion of cyclic GMP in the outer segment). The response to a brief flash is predicted to follow a delayed Gaussian function of time, i.e. after an initial short delay the response should begin rising in proportion to t2. Further, the response-intensity relation is predicted to obey an exponential saturation. 5. These predictions are compared with experiment, and it is shown that the rising phase of the flash response is accurately described over a very wide range of intensities. We conclude that the model provides a comprehensive description of the activation steps of phototransduction at a molecular level.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2011
                08 April 2011
                : 17
                : 876-884
                Affiliations
                [1 ]Institute of Anatomy, TU Dresden, Dresden, Germany
                [2 ]CRTD/DFG-Center for Regenerative Therapies Dresden – Cluster of Excellence, TU Dresden, Dresden, Germany
                Author notes

                The first two authors contributed equally to the study

                Correspondence to: Richard H.W. Funk, Institute of Anatomy, TU Dresden, Fetscherstr. 74 D-01307 Dresden, Germany; Phone: +49 351 458 6110; FAX: +49 351 458 6303; email: richard.funk@ 123456tu-dresden.de
                Article
                98 2010molvis0316
                3081800
                21527999
                f22581cd-1087-4cd2-97bd-ad6baaf4a960
                Copyright © 2011 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 July 2011
                : 01 April 2011
                Categories
                Research Article
                Custom metadata
                Export to XML
                Funk

                Vision sciences
                Vision sciences

                Comments

                Comment on this article