Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lack of evidence of viability and infectivity of SARS-CoV-2 in the fecal specimens of COVID-19 patients

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2 can be shed in feces and can enter sewage systems. In order to implement effective control measures and identify new channels of transmission, it is essential to identify the presence of infectious virus particles in feces and sewage. In this study, we attempt to utilize Molecular techniques, cell cultures and animal models to find out the infectivity of SARS-CoV-2 in the feces of COVID-19 patients. Our findings exclude the presence of infectious virus particles, suggesting that fecal-oral transmission may not be the main mode of transmission. Larger-scale initiatives are nevertheless required, particularly considering the emergence of new viral strains.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found

          Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

          In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virological assessment of hospitalized patients with COVID-2019

            Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prolonged presence of SARS-CoV-2 viral RNA in faecal samples

              We present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR results of all respiratory and faecal samples from patients with coronavirus disease 2019 (COVID-19) at the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, throughout the course of their illness and obligated quarantine period. Real-time RT-PCR was used to detect COVID-19 following the recommended protocol (appendix p 1). Patients with suspected SARS-CoV-2 were confirmed after two sequential positive respiratory tract sample results. Respiratory and faecal samples were collected every 1–2 days (depending on the availability of faecal samples) until two sequential negative results were obtained. We reviewed patients' demographic information, underlying diseases, clinical indices, and treatments from their official medical records. The study was approved by the Medical Ethical Committee of The Fifth Affiliated Hospital of Sun Yat-sen University (approval number K162-1) and informed consent was obtained from participants. Notably, patients who met discharge criteria were allowed to stay in hospital for extended observation and health care. Between Jan 16 and March 15, 2020, we enrolled 98 patients. Both respiratory and faecal samples were collected from 74 (76%) patients. Faecal samples from 33 (45%) of 74 patients were negative for SARS CoV-2 RNA, while their respiratory swabs remained positive for a mean of 15·4 days (SD 6·7) from first symptom onset. Of the 41 (55%) of 74 patients with faecal samples that were positive for SARS-CoV-2 RNA, respiratory samples remained positive for SARS-CoV-2 RNA for a mean of 16·7 days (SD 6·7) and faecal samples remained positive for a mean of 27·9 days (10·7) after first symptom onset (ie, for a mean of 11·2 days [9·2] longer than for respiratory samples). The full disease course of the 41 patients with faecal samples that were positive for SARS-CoV-2 RNA is shown in the figure . Notably, patient 1 had positive faecal samples for 33 days continuously after the respiratory samples became negative, and patient 4 tested positive for SARS-CoV-2 RNA in their faecal sample for 47 days after first symptom onset (appendix pp 4–5). Figure Timeline of results from throat swabs and faecal samples through the course of disease for 41 patients with SARS-CoV-2 RNA positive faecal samples, January to March, 2020 A summary of clinical symptoms and medical treatments is shown in the appendix (pp 2–3, 6–8). The presence of gastrointestinal symptoms was not associated with faecal sample viral RNA positivity (p=0·45); disease severity was not associated with extended duration of faecal sample viral RNA positivity (p=0·60); however, antiviral treatment was positively associated with the presence of viral RNA in faecal samples (p=0·025; appendix pp 2–3). These associations should be interpreted with caution because of the possibility of confounding. Additionally, the Ct values of all three targeted genes (RdRp, N, E) in the first faecal sample that was positive for viral RNA were negatively associated with the duration of faecal viral RNA positivity (RdRp gene r= –0·34; N gene r= –0·02; and E gene r= –0·16), whereas the correlation of the Ct values with duration of faecal sample positivity was only significant for RdRp (p=0·033; N gene p=0·91; E gene p=0·33). Our data suggest the possibility of extended duration of viral shedding in faeces, for nearly 5 weeks after the patients' respiratory samples tested negative for SARS-CoV-2 RNA. Although knowledge about the viability of SARS-CoV-2 is limited, 1 the virus could remain viable in the environment for days, which could lead to faecal–oral transmission, as seen with severe acute respiratory virus CoV and Middle East respiratory syndrome CoV. 2 Therefore, routine stool sample testing with real-time RT-PCR is highly recommended after the clearance of viral RNA in a patient's respiratory samples. Strict precautions to prevent transmission should be taken for patients who are in hospital or self-quarantined if their faecal samples test positive. As with any new infectious disease, case definition evolves rapidly as knowledge of the disease accrues. Our data suggest that faecal sample positivity for SARS-CoV-2 RNA normally lags behind that of respiratory tract samples; therefore, we do not suggest the addition of testing of faecal samples to the existing diagnostic procedures for COVID-19. However, the decision on when to discontinue precautions to prevent transmission in patients who have recovered from COVID-19 is crucial for management of medical resources. We would suggest the addition of faecal testing for SARS-CoV-2. 3 Presently, the decision to discharge a patient is made if they show no relevant symptoms and at least two sequential negative results by real-time RT-PCR of sputum or respiratory tract samples collected more than 24 h apart. Here, we observed that for over half of patients, their faecal samples remained positive for SARS-CoV-2 RNA for a mean of 11·2 days after respiratory tract samples became negative for SARS-CoV-2 RNA, implying that the virus is actively replicating in the patient's gastrointestinal tract and that faecal–oral transmission could occur after viral clearance in the respiratory tract. Determining whether a virus is viable using nucleic acid detection is difficult; further research using fresh stool samples at later timepoints in patients with extended duration of faecal sample positivity is required to define transmission potential. Additionally, we found patients normally had no or very mild symptoms after respiratory tract sample results became negative (data not shown); however, asymptomatic transmission has been reported. 4 No cases of transmission via the faecal–oral route have yet been reported for SARS-CoV-2, which might suggest that infection via this route is unlikely in quarantine facilities, in hospital, or while under self-isolation. However, potential faecal–oral transmission might pose an increased risk in contained living premises such as hostels, dormitories, trains, buses, and cruise ships. Respiratory transmission is still the primary route for SARS-CoV-2 and evidence is not yet sufficient to develop practical measures for the group of patients with negative respiratory tract sample results but positive faecal samples. Further research into the viability and infectivity of SARS-CoV-2 in faeces is required.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                20 October 2022
                2022
                20 October 2022
                : 10
                : 1030249
                Affiliations
                [1] 1Enteric Viruses Group, ICMR-National Institute of Virology , Pune, India
                [2] 2Microbial Containment Laboratory, ICMR-National Institute of Virology , Pune, India
                [3] 3Electron Microscopy and Histopathology Group, ICMR-National Institute of Virology , Pune, India
                Author notes

                Edited by: Debdutta Bhattacharya, Regional Medical Research Center (ICMR), India

                Reviewed by: Aravind Natarajan, Stanford University, United States; Muruganandam Nagarajan, Regional Medical Research Centre (ICMR), India

                *Correspondence: Pragya D. Yadav hellopragya22@ 123456gmail.com

                This article was submitted to Infectious Diseases - Surveillance, Prevention and Treatment, a section of the journal Frontiers in Public Health

                †These authors have contributed equally to this work

                Article
                10.3389/fpubh.2022.1030249
                9632423
                36339137
                f228aec1-dade-4448-ac4f-004a0cb3aff8
                Copyright © 2022 Joshi, Mohandas, Prasad, Shinde, Chavan, Yadav and Lavania.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 August 2022
                : 27 September 2022
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 31, Pages: 6, Words: 3490
                Categories
                Public Health
                Brief Research Report

                sars-cov-2,covid-19,fecal,real time rt-pcr,tem,ngs
                sars-cov-2, covid-19, fecal, real time rt-pcr, tem, ngs

                Comments

                Comment on this article