31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hyperthermia impairs short-term memory and peripheral motor drive transmission

      research-article
      , ,
      The Journal of Physiology
      Blackwell Science Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aims of this study were to determine (i) the effect of passive hyperthermia on motor drive and cognitive function, and (ii) whether head cooling can limit the hyperthermia-induced alterations. Sixteen subjects were randomly exposed for 2 h to three different conditions: control (Con, 20°C), hot (Hot, 50°C) and hot head cool (HHC – where cold packs were applied to the head under Hot conditions). Three cognitive tests measuring attention and two measuring memory were performed. Neuromuscular testing included electrically evoked muscle action potentials (M-waves) and reflex waves (H-reflex) at rest and during brief (4–5 s) and sustained (120 s) maximal voluntary contractions (MVC) of the plantar flexors. All the tests were performed in the environmental room. During brief MVC, torque was significantly lower in both Hot and HHC as compared to Con ( P < 0.05). The decrease in muscle activation was significant in Hot ( P < 0.05) but not in HBC ( P= 0.07). This was accompanied by peripheral failures in the transmission of the neural drive at both spinal (significant decrements in H-reflexes and V-waves, P < 0.05) and neuromuscular junction (significant decrements in M-waves, P < 0.05) levels. During sustained MVC, muscle activation was further depressed ( P < 0.05) without any concomitant failures in M-waves, suggesting neural activation adjustments occurring probably at the supraspinal level. Cerebral perturbations were confirmed by significant decrements in both memory tests in Hot as compared with Con ( P < 0.05) but not in simple tests (attention tests) that were not affected by hyperthermia. The decrement in memory capacity suggested the existence of frontal lobe activity impairments. Thus, HHC preserved memory capacity but not the visual memory.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses.

          Combined V-wave and Hoffmann (H) reflex measurements were performed during maximal muscle contraction to examine the neural adaptation mechanisms induced by resistance training. The H-reflex can be used to assess the excitability of spinal alpha-motoneurons, while also reflecting transmission efficiency (i.e., presynaptic inhibition) in Ia afferent synapses. Furthermore, the V-wave reflects the overall magnitude of efferent motor output from the alpha-motoneuron pool because of activation from descending central pathways. Fourteen male subjects participated in 14 wk of resistance training that involved heavy weight-lifting exercises for the muscles of the leg. Evoked V-wave, H-reflex, and maximal M-wave (M(max)) responses were recorded before and after training in the soleus muscle during maximal isometric ramp contractions. Maximal isometric, concentric, and eccentric muscle strength was measured by use of isokinetic dynamometry. V-wave amplitude increased approximately 50% with training (P < 0.01) from 3.19 +/- 0.43 to 4.86 +/- 0.43 mV, or from 0.308 +/- 0.048 to 0.478 +/- 0.034 when expressed relative to M(max) (+/- SE). H-reflex amplitude increased approximately 20% (P < 0.05) from 5.37 +/- 0.41 to 6.24 +/- 0.49 mV, or from 0.514 +/- 0.032 to 0.609 +/- 0.025 when normalized to M(max). In contrast, resting H-reflex amplitude remained unchanged with training (0.503 +/- 0.059 vs. 0.499 +/- 0.063). Likewise, no change occurred in M(max) (10.78 +/- 0.86 vs. 10.21 +/- 0.66 mV). Maximal muscle strength increased 23-30% (P < 0.05). In conclusion, increases in evoked V-wave and H-reflex responses were observed during maximal muscle contraction after resistance training. Collectively, the present data suggest that the increase in motoneuronal output induced by resistance training may comprise both supraspinal and spinal adaptation mechanisms (i.e., increased central motor drive, elevated motoneuron excitability, reduced presynaptic inhibition).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperthermia and central fatigue during prolonged exercise in humans.

            The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex.

              1. Voluntary activation of elbow flexor muscles can be optimal during brief maximal voluntary contractions (MVCs), although central fatigue, a progressive decline in the ability to drive the muscle maximally, develops during sustained or repeated efforts. We stimulated the motor cortex and motor point in human subjects to investigate motor output during fatigue. 2. The increment in force (relative to the voluntary force) produced by stimulation of the motor point of biceps brachii increased during sustained isometric MVCs of the elbow flexors. Motoneuronal output became suboptimal during the contraction, i.e. central fatigue developed and accounted for a small but significant loss of maximal voluntary force. During 3 min MVCs, voluntary activation of biceps fell to an average of 90.7% from an average of > 99%. 3. The increment in force (relative to the voluntary force) produced by magnetic cortical stimulation was initially small (1.0%) but also increased during sustained MVCs to 9.8% (with a 2 min MVC). Thus, cortical output was not optimal at the time of stimulation nor were sites distal to the motor cortex already acting maximally. 4. A sphygmomanometer cuff around the upper arm blocked blood supply to brachioradialis near the end of a sustained MVC and throughout subsequent brief MVCs. Neither maximal voluntary force nor voluntary activation recovered during ischaemia after the sustained MVC. However, fatigue-induced changes in EMG responses to magnetic cortical stimulation recovered rapidly despite maintained ischaemia. 5. In conclusion, during sustained MVCs, voluntary activation becomes less than optimal so that force can be increased by stimulation of the motor cortex or the motor nerve. Complex changes in excitability of the motor cortex also occur with fatigue, but can be dissociated from the impairment of voluntary activation. We argue that inadequate neural drive effectively 'upstream' of the motor cortex must be one site involved in the genesis of central fatigue.
                Bookmark

                Author and article information

                Journal
                J Physiol
                tjp
                The Journal of Physiology
                Blackwell Science Inc
                0022-3751
                1469-7793
                01 October 2008
                14 August 2008
                : 586
                : Pt 19
                : 4751-4762
                Affiliations
                ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Exercise and Sports Science Department Doha, Qatar
                Author notes
                Corresponding author S. Racinais: ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Exercise and Sports Science Department, PO Box 29222, Doha, Qatar. Email: contact@ 123456sebastienracinais.com
                Article
                10.1113/jphysiol.2008.157420
                2607529
                18703579
                f2401f96-e20b-4b57-80c6-97040086c31f
                © 2008 The Authors. Journal compilation © 2008 The Physiological Society
                History
                : 27 May 2008
                : 08 August 2008
                Categories
                Skeletal Muscle and Exercise

                Human biology
                Human biology

                Comments

                Comment on this article