19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanomaterials for T-cell cancer immunotherapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunotherapy using checkpoint blockade

          The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte antigen-4 (CTLA-4) or the programmed death-1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the pre-existence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long lasting disease control, yet one third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon gamma signaling pathways. New generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy.

            Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and cellular insights into T cell exhaustion.

              In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Nanotechnology
                Nat. Nanotechnol.
                Springer Science and Business Media LLC
                1748-3387
                1748-3395
                January 2021
                January 12 2021
                January 2021
                : 16
                : 1
                : 25-36
                Article
                10.1038/s41565-020-00822-y
                33437036
                f25f8390-ad98-40f3-bae9-96626271cd82
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article