33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome-wide analysis of immune-responsive microRNAs against poly (I:C) challenge in Branchiostoma belcheri by deep sequencing and bioinformatics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amphioxus is a key experimental animal for studying the evolution of vertebrate immune system. However, we still do not know about the roles of microRNAs (miRNAs) under viral stress in amphioxus. In this study, we sequenced six small RNA libraries (three biological replicates were included in the treatments challenged by the viral mimic, poly (I:C) (pIC) and control groups, respectively) from Branchiostoma belcheri. A total of 151 known miRNAs, 197 new miRNAs (named novel_mir, including nine conserved miRNAs) were identified by deep sequencing from the six libraries. We primarily focused on differentially expressed miRNAs (DEMs) after pIC challenge. Next, we screened a total of 77 DEMs, including 27 down- and 50 up-regulated DEMs in response to pIC challenge. Furthermore, we used real-time quantitative PCR (qRT-PCR) to verify the expression levels of 10 randomly selected DEMs. Target genes likely regulated by DEMs were predicted, and functional enrichment analyses of these targets were performed using bioinformatics approach. MiRNA targets of DEMs are primarily involved in immune response, diseases, cancer and regulation process, and could be largely linked to 14 immune-related signaling pathways, including NF-kappa B, NOD-like receptor, RIG-I-like receptor and endocytosis. The present study for the first time explores key regulatory roles of miRNAs in the innate antiviral immune response in amphioxus, and will provide insight into the molecular basis of antiviral immunity and evolution of immune-related miRNAs.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The amphioxus genome and the evolution of the chordate karyotype.

            Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological and pathological roles for microRNAs in the immune system.

              Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 September 2017
                28 August 2017
                : 8
                : 43
                : 73590-73602
                Affiliations
                1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
                2 LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
                3 Beijing Genomics Institute, Shenzhen, China
                Author notes
                Correspondence to: Jun-Yuan Chen, chenjy@ 123456nju.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                20570
                10.18632/oncotarget.20570
                5650284
                29088729
                f2cc8966-0088-47db-8c8b-5da2b8981b3e
                Copyright: © 2017 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2017
                : 4 August 2017
                Categories
                Research Paper: Immunology

                Oncology & Radiotherapy
                branchiostoma belcheri,mirna,poly (i:c),deep sequencing,immunology and microbiology section,immune response,immunity

                Comments

                Comment on this article