14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein.

      Circulation
      Animals, Animals, Newborn, Apoptosis, drug effects, Carrier Proteins, metabolism, Cell Hypoxia, physiology, Cell Survival, Cells, Cultured, Cyclic AMP Response Element-Binding Protein, genetics, Insulin-Like Growth Factor I, pharmacology, MAP Kinase Kinase 1, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Mitogen-Activated Protein Kinase Kinases, Mitogen-Activated Protein Kinases, Mutagenesis, Site-Directed, Myocardium, cytology, Phosphatidylinositol 3-Kinases, Phosphorylation, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-akt, Proto-Oncogene Proteins c-bcl-2, biosynthesis, Rats, Signal Transduction, Transcription, Genetic, Transfection, bcl-Associated Death Protein

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A variety of pathologic stimuli lead to apoptosis of cardiomyocytes. Survival factors like insulin-like growth factor-I (IGF-I) exert anti-apoptotic effects in the heart. Yet the underlying signaling pathways are poorly understood. In a model of hypoxia-induced apoptosis of cultured neonatal cardiomyocytes, IGF-I prevented cell death in a dose-dependent manner. Antiapoptotic signals induced by IGF-I are mediated by more than one signaling pathway, because pharmacological inhibition of the phosphatidylinositol-3-OH-kinase (PI3K) or the mitogen-activated protein kinase kinase (MEK1) signaling pathway both antagonize the protective effect of IGF-I in an additive manner. IGF-I-stimulation was followed by a PI3K-dependent phosphorylation of AKT and BAD and an MEK1-dependent phosphorylation of extracellular signal-regulated kinase (ERK) 1 and ERK2. IGF-I also induced phosphorylation of cAMP response element-binding protein (CREB) in a PI3K- and MEK1-dependent manner. Ectopic overexpression of a dominant-negative mutant of CREB abolished the antiapoptotic effect of IGF-I. Protein levels of the antiapoptotic factor bcl-2 increased after longer periods of IGF-I-stimulation, which could be reversed by pharmacological inhibition of PI3K as well as MEK1 and also by overexpression of dominant-negative CREB. In summary, our data demonstrate that in cardiomyocytes, the antiapoptotic effect of IGF-I requires both PI3K- and MEK1-dependent pathways leading to the activation of the transcription factor CREB, which then induces the expression of the antiapoptotic factor bcl-2.

          Related collections

          Author and article information

          Comments

          Comment on this article