Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-limb asymmetry of kinetic and electromyographic during walking in patients with chronic ankle instability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After an initial ankle sprain, a relevant number of participants develop chronic ankle instability (CAI). Compensatory strategies in patients with CAI may change the inter-limb symmetry needed for absorbing movement-related forces. Accordingly, an increased risk of injury can occur. The present study aimed to compare the inter-limb asymmetry of kinetic and electromyography between individuals with CAI and without a history of an ankle sprain (Non-CAI) during walking. In this cross-sectional study, fifty-six athletes (28 CAI; 28 Non-CAI) participated. Participants walked at a comfortable pace over level ground while vertical ground reaction force (vGRF) and muscle activity of the tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius were recorded. Inter-limb asymmetry during walking was calculated for each of the variables. Patients with CAI exhibited a greater inter-limb asymmetry of the first peak of vGRF, time to peak vGRF, and loading rate (P < 0.001), as well as presenting a greater inter-limb asymmetry of peroneus longus activity (contact phase) (P = 0.003) and gluteus medius activity (midstance/propulsion phase) (P = 0.010) compared to the Non-CAI group. No other differences in vGRF or muscles activity were observed between the groups. Our findings indicate that patients with CAI walk with greater inter-limb asymmetry in vGRF and muscle activity in different phases of the gait cycle compared to Non-CAI group. Our results could inform future studies on gait training aimed to reduce asymmetry during walking in patients with CAI.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains

          Lateral ankle sprains (LASs) are the most prevalent musculoskeletal injury in physically active populations. They also have a high prevalence in the general population and pose a substantial healthcare burden. The recurrence rates of LASs are high, leading to a large percentage of patients with LAS developing chronic ankle instability. This chronicity is associated with decreased physical activity levels and quality of life and associates with increasing rates of post-traumatic ankle osteoarthritis, all of which generate financial costs that are larger than many have realised. The literature review that follows expands this paradigm and introduces emerging areas that should be prioritised for continued research, supporting a companion position statement paper that proposes recommendations for using this summary of information, and needs for specific future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Updated Model of Chronic Ankle Instability

            Lateral ankle sprains (LASs) are among the most common injuries incurred during participation in sport and physical activity, and it is estimated that up to 40% of individuals who experience a first-time LAS will develop chronic ankle instability (CAI). Chronic ankle instability is characterized by a patient's being more than 12 months removed from the initial LAS and exhibiting a propensity for recurrent ankle sprains, frequent episodes or perceptions of the ankle giving way, and persistent symptoms such as pain, swelling, limited motion, weakness, and diminished self-reported function. We present an updated model of CAI that aims to synthesize the current understanding of its causes and serves as a framework for the clinical assessment and rehabilitation of patients with LASs or CAI. Our goal was to describe how primary injury to the lateral ankle ligaments from an acute LAS may lead to a collection of interrelated pathomechanical, sensory-perceptual, and motor-behavioral impairments that influence a patient's clinical outcome. With an underpinning of the biopsychosocial model, the concepts of self-organization and perception-action cycles derived from dynamic systems theory and a patient-specific neurosignature, stemming from the Melzack neuromatrix of pain theory, are used to describe these interrelationships.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of whole body balance in the frontal plane during human walking.

              A whole-body inverted pendulum model was used to investigate the control of balance and posture in the frontal plane during human walking. The model assessed the effects of net joint moments, joint accelerations and gravitational forces acting about the supporting foot and hip. Three video cameras and two force platforms were used to collect kinematic and kinetic data from repeat trials on four subjects during natural walking. An inverse solution was used to calculate net joint moments and powers. Whole body balance was ensured by the centre of mass (CM) passing medial to the supporting foot, thus creating a continual state of dynamic imbalance towards the centerline of the plane of progression. The medial acceleration of the CM was primarily generated by a gravitational moment about the supporting foot, whose magnitude was established at initial contact by the lateral placement of the new supporting foot relative to the horizontal location of the CM. Balance of the trunk and swing leg about the supporting hip was maintained by an active hip abduction moment, which recognized the contribution of the passive accelerational moment, and countered a large destabilizing gravitational moment. Posture of the upper trunk was regulated by the spinal lateral flexors. Interactions between the supporting foot and hip musculature to permit variability in strategies used to maintain balance were identified. Possible control strategies and muscle activation synergies are discussed.
                Bookmark

                Author and article information

                Contributors
                letafatkaramir@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 March 2022
                10 March 2022
                2022
                : 12
                : 3928
                Affiliations
                [1 ]GRID grid.412265.6, ISNI 0000 0004 0406 5813, Biomechanics and Corrective Exercise Laboratory, Department of Biomechanics and Sport Injury, Faculty of Physical Education and Sports Sciences, , Kharazmi University, ; Mirdamad Blvd., Hesari St, Tehran, Iran
                [2 ]GRID grid.266859.6, ISNI 0000 0000 8598 2218, Department of Kinesiology, , University of North Carolina at Charlotte, ; Charlotte, NC USA
                [3 ]GRID grid.5611.3, ISNI 0000 0004 1763 1124, School of Physiotherapy, , University of Verona, ; Verona, Italy
                Article
                7975
                10.1038/s41598-022-07975-x
                8913811
                35273300
                f3043391-74e3-456e-8d11-22e07bcc5b67
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 August 2021
                : 23 February 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                health care,medical research,nanoscience and technology
                Uncategorized
                health care, medical research, nanoscience and technology

                Comments

                Comment on this article