51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Systemic Microvascular Dysfunction and Inflammation after Pulmonary Particulate Matter Exposure

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca 2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO 2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO 2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO 2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO 2-exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the impairment of endothelium-dependent dilation in the systemic microcirculation coincides with PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular observations are consistent with events that contribute to the disruption of the control of peripheral resistance and/or cardiac dysfunction associated with PM exposure.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994.

          Air pollution in cities has been linked to increased rates of mortality and morbidity in developed and developing countries. Although these findings have helped lead to a tightening of air-quality standards, their validity with respect to public health has been questioned. We assessed the effects of five major outdoor-air pollutants on daily mortality rates in 20 of the largest cities and metropolitan areas in the United States from 1987 to 1994. The pollutants were particulate matter that is less than 10 microm in aerodynamic diameter (PM10), ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. We used a two-stage analytic approach that pooled data from multiple locations. After taking into account potential confounding by other pollutants, we found consistent evidence that the level of PM10 is associated with the rate of death from all causes and from cardiovascular and respiratory illnesses. The estimated increase in the relative rate of death from all causes was 0.51 percent (95 percent posterior interval, 0.07 to 0.93 percent) for each increase in the PM10 level of 10 microg per cubic meter. The estimated increase in the relative rate of death from cardiovascular and respiratory causes was 0.68 percent (95 percent posterior interval, 0.20 to 1.16 percent) for each increase in the PM10 level of 10 microg per cubic meter. There was weaker evidence that increases in ozone levels increased the relative rates of death during the summer, when ozone levels are highest, but not during the winter. Levels of the other pollutants were not significantly related to the mortality rate. There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults.

            Fine particulate air pollution and ozone are associated with increased cardiovascular events. To help explain the mechanism behind these observations, we investigated the effect of air pollution exposure on vascular function. Twenty-five healthy adults underwent a randomized, double-blind, crossover study comparing the vascular response to the 2-hour inhalation of approximately 150 microg/m(3) of concentrated ambient fine particles (CAP) plus ozone (120 ppb) versus the response to the inhalation of filtered air. High-resolution vascular ultrasonography was used to measure alterations in brachial artery diameter, endothelial-dependent flow-mediated dilatation (FMD) and endothelial-independent nitroglycerin-mediated dilatation (NMD). Exposure to CAP plus ozone caused a significant brachial artery vasoconstriction compared with filtered air inhalation (-0.09+/-0.15 mm versus +0.01+/-0.18 mm, P=0.03). There were no significant differences in FMD (+0.29+/-4.11% versus -0.03+/-6.63%, P=0.88), NMD (+3.87+/-5.43% versus +3.46+/-7.92%, P=0.83), or blood pressure responses between exposures. Short-term inhalation of fine particulate air pollution and ozone at concentrations that occur in the urban environment causes acute conduit artery vasoconstriction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats.

              Studies with intravenously injected ultrafine particles have shown that the liver is the major organ of their uptake from the blood circulation. Measuring translocation of inhaled ultrafine particles to extrapulmonary organs via the blood compartment is hampered by methodological difficulties (i.e., label may come off, partial solubilization) and analytical limitations (measurement of very small amounts). The objective of our pilot study was to determine whether ultrafine elemental carbon particles translocate to the liver and other extrapulmonary organs following inhalation as singlet particles by rats. We generated ultrafine (13)C particles as an aerosol with count median diameters (CMDs) of 20-29 nm (GSD 1.7) using electric spark discharge of (13)C graphite electrodes in argon. Nine Fischer 344 rats were exposed to these particles for 6 h. in whole-body inhalation chambers at concentrations of 180 and 80 microg/m(3); 3 animals each were killed at 0.5, 18, and 24 h postexposure. Six unexposed rats served as controls. Lung lobes, liver, heart, brain, olfactory bulb, and kidney were excised, homogenized, and freeze-dried for analysis of the added (13)C by isotope ratio mass spectrometry. Organic (13)C was not detected in the (13)C particles. The (13)C retained in the lung at 0.5 h postexposure was about 70% less than predicted by rat deposition models for ultrafine particles, and did not change significantly during the 24-h postexposure period. Normalized to exposure concentration, the added (13)C per gram of lung on average in the postexposure period was approximately 9 ng/g organ/microg/m(3). Significant amounts of (13)C had accumulated in the liver by 0.5 h postinhalation only at the high exposure concentration, whereas by 18 and 24 h postexposure the (13)C amount of the livers of all exposed rats was about fivefold greater than the (13)C burden retained in the lung. No significant increase in (13)C was detected in the other organs which were examined. These results demonstrate effective translocation of ultrafine elemental carbon particles to the liver by 1 d after inhalation exposure. Translocation pathways include direct input into the blood compartment from ultrafine carbon particles deposited throughout the respiratory tract. However, since predictive particle deposition models indicate that respiratory tract deposits alone may not fully account for the hepatic (13)C burden, input from ultrafine particles present in the GI tract needs to be considered as well. Such translocation to blood and extrapulmonary tissues may well be different between ultrafine carbon and other insoluble (metal) ultrafine particles.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                March 2006
                13 October 2005
                : 114
                : 3
                : 412-419
                Affiliations
                [1 ] Department of Physiology and Pharmacology, and
                [2 ] Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
                [3 ] Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
                Author notes
                Address correspondence to T.R. Nurkiewicz, Department of Physiology and Pharmacology, Box 9229, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506-9229 USA. Telephone: (304) 293-7328. Fax: (304) 293-5513. E-mail: tnurkiewicz@hsc.wvu.edu

                The authors declare they have no competing financial interests.

                Article
                ehp0114-000412
                10.1289/ehp.8413
                1392236
                16507465
                f30b0a84-6ad6-41ac-be4b-630f7425cc66
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 20 June 2005
                : 12 October 2005
                Categories
                Research

                Public health
                arteriole,oxidative stress,microcirculation,myeloperoxidase,systemic,polymorphonuclear leukocyte,venule,particulate matter,endothelium

                Comments

                Comment on this article