51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response

      review-article
      , *
      Scientia Pharmaceutica
      MDPI
      aroma, brain wave, electroencephalography, fragrance, psychophysiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the psychophysiological activities of humans with special reference to EEG changes.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          New vistas for alpha-frequency band oscillations.

          The amplitude of alpha-frequency band (8-14 Hz) activity in the human electroencephalogram is suppressed by eye opening, visual stimuli and visual scanning, whereas it is enhanced during internal tasks, such as mental calculation and working memory. alpha-Frequency band oscillations have hence been thought to reflect idling or inhibition of task-irrelevant cortical areas. However, recent data on alpha-amplitude and, in particular, alpha-phase dynamics posit a direct and active role for alpha-frequency band rhythmicity in the mechanisms of attention and consciousness. We propose that simultaneous alpha-, beta- (14-30 Hz) and gamma- (30-70 Hz) frequency band oscillations are required for unified cognitive operations, and hypothesize that cross-frequency phase synchrony between alpha, beta and gamma oscillations coordinates the selection and maintenance of neuronal object representations during working memory, perception and consciousness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Storage of 7 +/- 2 short-term memories in oscillatory subcycles.

            Psychophysical measurements indicate that human subjects can store approximately seven short-term memories. Physiological studies suggest that short-term memories are stored by patterns of neuronal activity. Here it is shown that activity patterns associated with multiple memories can be stored in a single neural network that exhibits nested oscillations similar to those recorded from the brain. Each memory is stored in a different high-frequency ("40 hertz") subcycle of a low-frequency oscillation. Memory patterns repeat on each low-frequency (5 to 12 hertz) oscillation, a repetition that relies on activity-dependent changes in membrane excitability rather than reverberatory circuits. This work suggests that brain oscillations are a timing mechanism for controlling the serial processing of short-term memories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel multigene family may encode odorant receptors: a molecular basis for odor recognition.

              The mammalian olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants presumably results from the association of odorous ligands with specific receptors on olfactory sensory neurons. To address the problem of olfactory perception at a molecular level, we have cloned and characterized 18 different members of an extremely large multigene family that encodes seven transmembrane domain proteins whose expression is restricted to the olfactory epithelium. The members of this novel gene family are likely to encode a diverse family of odorant receptors.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sci Pharm
                Sci Pharm
                scipharm
                Scientia Pharmaceutica
                MDPI
                0036-8709
                2218-0532
                29 November 2016
                2016
                : 84
                : 4
                : 724-752
                Affiliations
                School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea; sowndhar1982@ 123456gmail.com
                Author notes
                [* ]Correspondence: perfume@ 123456kangwon.ac.kr ; Tel.: +82-33-250-6447; Fax: +82-33-241-6440
                Article
                scipharm-84-00724
                10.3390/scipharm84040724
                5198031
                27916830
                f31323e6-7c73-4b7d-b8dd-40791d69b3d5
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 October 2016
                : 21 November 2016
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                aroma,brain wave,electroencephalography,fragrance,psychophysiology

                Comments

                Comment on this article