29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Suite of Plasmid Vectors for Fluorescence-Based Imaging of Root Colonizing Pseudomonads

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the terrestrial ecosystem, plant–microbe symbiotic associations are ecologically and economically important processes. To better understand these associations at structural and functional levels, different molecular and biochemical tools are applied. In this study, we have constructed a suite of vectors that incorporates several new elements into the rhizosphere stable, broad-host vector pME6031. The new vectors are useful for studies requiring multi-color tagging and visualization of plant-associated, Gram-negative bacterial strains such as Pseudomonas plant growth promotion and biocontrol strains. A number of genetic elements, including constitutive promoters and signal peptides that target secretion to the periplasm, have been evaluated. Several next generation fluorescent proteins, namely mTurquoise2, mNeonGreen, mRuby2, DsRed-Express2 and E2-Crimson have been incorporated into the vectors for whole cell labeling or protein tagging. Secretion of mTurquoise2 and mNeonGreen into the periplasm of Pseudomonas fluorescens SBW25 has also been demonstrated, providing a vehicle for tagging proteins in the periplasmic compartment. A higher copy number version of select plasmids has been produced by introduction of a previously described repA mutation, affording an increase in protein expression levels. The utility of these plasmids for fluorescence-based imaging is demonstrated by root colonization of Solanum lycopersicum seedlings by P. fluorescens SBW25 in a hydroponic growth system. The plasmids are stably maintained during root colonization in the absence of selective pressure for more than 2 weeks.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum

            Despite the existence of fluorescent proteins spanning the entire visual spectrum, the bulk of modern imaging experiments continue to rely on variants of the green fluorescent protein derived from Aequorea victoria. Meanwhile, a great deal of recent effort has been devoted to engineering and improving red fluorescent proteins, and relatively little attention has been given to green and yellow variants. Here we report a novel monomeric yellow-green fluorescent protein, mNeonGreen, which is derived from a tetrameric fluorescent protein from the cephalochordate Branchiostoma lanceolatum. This fluorescent protein is the brightest monomeric green or yellow fluorescent protein yet described, performs exceptionally well as a fusion tag for traditional imaging as well as stochastic single-molecule superresolution imaging, and is an excellent FRET acceptor for the newest generation of cyan fluorescent proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improving FRET dynamic range with bright green and red fluorescent proteins

              A variety of genetically encoded reporters use changes in fluorescence (or Förster) resonance energy transfer (FRET) to report on biochemical processes in living cells. The standard genetically encoded FRET pair consists of cyan and yellow fluorescent proteins (CFP and YFP), but many CFP-YFP reporters suffer from low FRET dynamic range, phototoxicity from the CFP excitation light, and complex photokinetic events such as reversible photobleaching and photoconversion. Here, we engineered two fluorescent proteins, Clover and mRuby2, which are the brightest green and red fluorescent proteins to date, and have the highest Förster radius of any ratiometric FRET pair yet described. Replacement of CFP and YFP in reporters of kinase activity, small GTPase activity, and transmembrane voltage significantly improves photostability, FRET dynamic range, and emission ratio changes. These improvements enhance detection of transient biochemical events such as neuronal action potential firing and RhoA activation in growth cones.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                01 February 2018
                2017
                : 8
                : 2242
                Affiliations
                [1] 1Biosciences Division, Argonne National Laboratory , Argonne, IL, United States
                [2] 2Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology , Chicago, IL, United States
                Author notes

                Edited by: Gail Preston, University of Oxford, United Kingdom

                Reviewed by: Lucia Grenga, John Innes Centre (BBSRC), United Kingdom; Brian H. Kvitko, University of Georgia, United States; Andrew Spiers, Abertay University, United Kingdom

                *Correspondence: Rosemarie Wilton, rwilton@ 123456anl.gov

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.02242
                5799272
                29449848
                f33c57a5-a433-4974-addb-c2bb4be2712b
                Copyright © 2018 UChicago Argonne, LLC, Operator of Argonne National Laboratory.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 August 2017
                : 20 December 2017
                Page count
                Figures: 5, Tables: 4, Equations: 0, References: 75, Pages: 15, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                broad-host vector,fluorescent protein,rhizosphere,pseudomonas,pvs1,plant growth promotion,biocontrol strain

                Comments

                Comment on this article