69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

      review-article
      1 , * , 2
      Marine Drugs
      MDPI
      cyanobacteria, cyanotoxins, bioaccumulation, invertebrates, vertebrates

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

          Related collections

          Most cited references319

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.

          The glutathione transferases (GSTs; also known as glutathione S-transferases) are major phase II detoxification enzymes found mainly in the cytosol. In addition to their role in catalysing the conjugation of electrophilic substrates to glutathione (GSH), these enzymes also carry out a range of other functions. They have peroxidase and isomerase activities, they can inhibit the Jun N-terminal kinase (thus protecting cells against H(2)O(2)-induced cell death), and they are able to bind non-catalytically a wide range of endogenous and exogenous ligands. Cytosolic GSTs of mammals have been particularly well characterized, and were originally classified into Alpha, Mu, Pi and Theta classes on the basis of a combination of criteria such as substrate/inhibitor specificity, primary and tertiary structure similarities and immunological identity. Non-mammalian GSTs have been much less well characterized, but have provided a disproportionately large number of three-dimensional structures, thus extending our structure-function knowledge of the superfamily as a whole. Moreover, several novel classes identified in non-mammalian species have been subsequently identified in mammals, sometimes carrying out functions not previously associated with GSTs. These studies have revealed that the GSTs comprise a widespread and highly versatile superfamily which show similarities to non-GST stress-related proteins. Independent classification systems have arisen for groups of organisms such as plants and insects. This review surveys the classification of GSTs in non-mammalian sources, such as bacteria, fungi, plants, insects and helminths, and attempts to relate them to the more mainstream classification system for mammalian enzymes. The implications of this classification with regard to the evolution of GSTs are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

            Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxins of cyanobacteria.

              Blue-green algae are found in lakes, ponds, rivers and brackish waters throughout the world. In case of excessive growth such as bloom formation, these bacteria can produce inherent toxins in quantities causing toxicity in mammals, including humans. These cyanotoxins include cyclic peptides and alkaloids. Among the cyclic peptides are the microcystins and the nodularins. The alkaloids include anatoxin-a, anatoxin-a(S), cylindrospermopsin, saxitoxins (STXs), aplysiatoxins and lyngbyatoxin. Both biological and chemical methods are used to determine cyanotoxins. Bioassays and biochemical assays are nonspecific, so they can only be used as screening methods. HPLC has some good prospects. For the subsequent detection of these toxins different detectors may be used, ranging from simple UV-spectrometry via fluorescence detection to various types of MS. The main problem in the determination of cyanobacterial toxins is the lack of reference materials of all relevant toxins. In general, toxicity data on cyanotoxins are rather scarce. A majority of toxicity data are known to be of microcystin-LR. For nodularins, data from a few animal studies are available. For the alkaloids, limited toxicity data exist for anatoxin-a, cylindrospermopsin and STX. Risk assessment for acute exposure could be relevant for some types of exposure. Nevertheless, no acute reference doses have formally been derived thus far. For STX(s), many countries have established tolerance levels in bivalves, but these limits were set in view of STX(s) as biotoxins, accumulating in marine shellfish. Official regulations for other cyanotoxins have not been established, although some (provisional) guideline values have been derived for microcystins in drinking water by WHO and several countries.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                16 December 2011
                December 2011
                : 9
                : 12
                : 2729-2772
                Affiliations
                [1 ]Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil
                [2 ]Departament of Ecology and Marine Resources, Federal University of Rio de Janeiro State (UNIRIO), Av. Pasteur 458, Urca, Rio de Janeiro, RJ 22290-040, Brazil; Email: betinaksuzuki@ 123456unirio.br
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: aloysio@ 123456ioc.fiocruz.br ; Tel.: +55-2125-621-562; Fax: +55-2125-621-525.
                Article
                marinedrugs-09-02729
                10.3390/md9122729
                3280578
                22363248
                f3466912-0274-4de2-9311-c4f9137f84f9
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 18 October 2011
                : 29 November 2011
                : 01 December 2011
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                invertebrates,cyanobacteria,bioaccumulation,vertebrates,cyanotoxins

                Comments

                Comment on this article