76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The alarming rise in the obesity epidemic and growing concern for the pathologic consequences of the metabolic syndrome warrant great need for development of obesity-related pharmacotherapeutics. The search for such therapeutics is severely limited by the slow throughput of animal models of obesity. Amenable to placement into a 96 well plate, zebrafish larvae have emerged as one of the highest throughput vertebrate model organisms for performing small molecule screens. A method for visually identifying non-toxic molecular effectors of fat metabolism using a live transparent vertebrate was developed. Given that increased levels of nicotinamide adenine dinucleotide (NAD) via deletion of CD38 have been shown to prevent high fat diet induced obesity in mice in a SIRT-1 dependent fashion we explored the possibility of directly applying NAD to zebrafish.

          Methods

          Zebrafish larvae were incubated with daily refreshing of nile red containing media starting from a developmental stage of equivalent fat content among siblings (3 days post-fertilization, dpf) and continuing with daily refreshing until 7 dpf.

          Results

          PPAR activators, beta-adrenergic agonists, SIRT-1 activators, and nicotinic acid treatment all caused predicted changes in fat, cholesterol, and gene expression consistent with a high degree of evolutionary conservation of fat metabolism signal transduction extending from man to zebrafish larvae. All changes in fat content were visually quantifiable in a relative fashion using live zebrafish larvae nile red fluorescence microscopy. Resveratrol treatment caused the greatest and most consistent loss of fat content. The resveratrol tetramer Vaticanol B caused loss of fat equivalent in potency to resveratrol alone. Significantly, the direct administration of NAD decreased fat content in zebrafish. Results from knockdown of a zebrafish G-PCR ortholog previously determined to decrease fat content in C. elegans support that future GPR142 antagonists may be effective non-toxic anti-obesity therapeutics.

          Conclusion

          Owing to the apparently high level of evolutionary conservation of signal transduction pathways regulating lipid metabolism, the zebrafish can be useful for identifying non-toxic small molecules or pharmacological target gene products for developing molecular therapeutics for treating clinical obesity. Our results support the promising potential in applying NAD or resveratrol where the underlying target protein likely involves Sirtuin family member proteins. Furthermore data supports future studies focused on determining whether there is a high concentration window for resveratrol that is effective and non-toxic in high fat obesity murine models.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.

          Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High body mass index for age among US children and adolescents, 2003-2006.

            The prevalence of overweight among US children and adolescents increased between 1980 and 2004. To estimate the prevalence of 3 measures of high body mass index (BMI) for age (calculated as weight in kilograms divided by height in meters squared) and to examine recent trends for US children and adolescents using national data with measured heights and weights. Height and weight measurements were obtained from 8165 children and adolescents as part of the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey (NHANES), nationally representative surveys of the US civilian, noninstitutionalized population. Prevalence of BMI for age at or above the 97th percentile, at or above the 95th percentile, and at or above the 85th percentile of the 2000 sex-specific Centers for Disease Control and Prevention (CDC) BMI-for-age growth charts among US children by age, sex, and racial/ethnic group. Because no statistically significant differences in the prevalence of high BMI for age were found between estimates for 2003-2004 and 2005-2006, data for the 4 years were combined to provide more stable estimates for the most recent time period. Overall, in 2003-2006, 11.3% (95% confidence interval [CI], 9.7%-12.9%) of children and adolescents aged 2 through 19 years were at or above the 97th percentile of the 2000 BMI-for-age growth charts, 16.3% (95% CI, 14.5%-18.1%) were at or above the 95th percentile, and 31.9% (95% CI, 29.4%-34.4%) were at or above the 85th percentile. Prevalence estimates varied by age and by racial/ethnic group. Analyses of the trends in high BMI for age showed no statistically significant trend over the 4 time periods (1999-2000, 2001-2002, 2003-2004, and 2005-2006) for either boys or girls (P values between .07 and .41). The prevalence of high BMI for age among children and adolescents showed no significant changes between 2003-2004 and 2005-2006 and no significant trends between 1999 and 2006.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.

              Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.
                Bookmark

                Author and article information

                Journal
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central
                1743-7075
                2008
                27 August 2008
                : 5
                : 23
                Affiliations
                [1 ]Department of Genome Science, University of Cincinnati, Cincinnati, OH, 4523, USA
                [2 ]Department of Surgery, University of Cincinnati, Cincinnati, OH, 4523, USA
                [3 ]Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 4523, USA
                Article
                1743-7075-5-23
                10.1186/1743-7075-5-23
                2531115
                18752667
                f3f1d853-06c9-423b-a82f-d0140b1d8e31
                Copyright © 2008 Jones et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 July 2008
                : 27 August 2008
                Categories
                Research

                Nutrition & Dietetics
                Nutrition & Dietetics

                Comments

                Comment on this article