66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer cell molecular mimicry of stem cells (SC) imbues neoplastic cells with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to exhibit oncogenic potential. We have recently reported that shRNA-mediated knockdown of the embryonic stem cell (ESC) self-renewal gene NANOG significantly reduced the clonogenic and tumorigenic capabilities of various cancer cells. In this study, we sought to test the potential pro-tumorigenic functions of NANOG, particularly, in prostate cancer (PCa). Using quantitative RT-PCR, we first confirmed that PCa cells expressed NANOG mRNA primarily from the NANOGP8 locus on chromosome 15q14. We then constructed a lentiviral promoter reporter in which the -3.8 kb NANOGP8 genomic fragment was used to drive the expression of green fluorescence protein (GFP). We observed that NANOGP8-GFP + PCa cells exhibited cancer stem cell (CSC) characteristics such as enhanced clonal growth and tumor regenerative capacity. To further investigate the functions and mechanisms of NANOG in tumorigenesis, we established tetracycline-inducible NANOG overexpressing cancer cell lines, including both prostate (Du145 and LNCaP) and breast (MCF-7) cancer cells. NANOG induction promoted drug-resistance in MCF-7 cells, tumor regeneration in Du145 cells, and, most importantly, castration-resistant tumor development in LNCaP cells. These pro-tumorigenic effects of NANOG were associated with key molecular changes, including an upregulation of molecules such as CXCR4, IGFBP5, CD133 and ALDH1. The present gain-of-function studies, coupled with our recent loss-of-function work, establish the integral role for NANOG in neoplastic processes and shed light on its mechanisms of action.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.

          Embryonic stem (ES) cells undergo extended proliferation while remaining poised for multilineage differentiation. A unique network of transcription factors may characterize self-renewal and simultaneously suppress differentiation. We applied expression cloning in mouse ES cells to isolate a self-renewal determinant. Nanog is a divergent homeodomain protein that directs propagation of undifferentiated ES cells. Nanog mRNA is present in pluripotent mouse and human cell lines, and absent from differentiated cells. In preimplantation embryos, Nanog is restricted to founder cells from which ES cells can be derived. Endogenous Nanog acts in parallel with cytokine stimulation of Stat3 to drive ES cell self-renewal. Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels. Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision. These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype.

            Glioblastomas are highly lethal cancers that contain cellular hierarchies with self-renewing cancer stem cells that can propagate tumors in secondary transplant assays. The potential significance of cancer stem cells in cancer biology has been demonstrated by studies showing contributions to therapeutic resistance, angiogenesis and tumor dispersal. We recently reported that physiologic oxygen levels differentially induce hypoxia inducible factor-2alpha (HIF2alpha) levels in cancer stem cells. HIF1alpha functioned in proliferation and survival of all cancer cells but also was activated in normal neural progenitors suggesting a potentially restricted therapeutic index while HIF2alpha was essential in only in cancer stem cells and was not expressed by normal neural progenitors demonstrating HIF2alpha is a cancer stem cell specific target. We now extend these studies to examine the role of hypoxia in regulating tumor cell plasticity. We find that hypoxia promotes the self-renewal capability of the stem and non-stem population as well as promoting a more stem-like phenotype in the non-stem population with increased neurosphere formation as well as upregulation of important stem cell factors, such as OCT4, NANOG and c-MYC. The importance of HIF2alpha was further supported as forced expression of non-degradable HIF2alpha induced a cancer stem cell marker and augmented the tumorigenic potential of the non-stem population. This novel finding may indicate a specific role of HIF2alpha in promoting glioma tumorigenesis. The unexpected plasticity of the non-stem glioma population and the stem-like phenotype emphasizes the importance of developing therapeutic strategies targeting the microenvironmental influence on the tumor in addition to cancer stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery.

              In vivo transduction of nondividing cells by human immunodeficiency virus type 1 (HIV-1)-based vectors results in transgene expression that is stable over several months. However, the use of HIV-1 vectors raises concerns about their safety. Here we describe a self-inactivating HIV-1 vector with a 400-nucleotide deletion in the 3' long terminal repeat (LTR). The deletion, which includes the TATA box, abolished the LTR promoter activity but did not affect vector titers or transgene expression in vitro. The self-inactivating vector transduced neurons in vivo as efficiently as a vector with full-length LTRs. The inactivation design achieved in this work improves significantly the biosafety of HIV-derived vectors, as it reduces the likelihood that replication-competent retroviruses will originate in the vector producer and target cells, and hampers recombination with wild-type HIV in an infected host. Moreover, it improves the potential performance of the vector by removing LTR sequences previously associated with transcriptional interference and suppression in vivo and by allowing the construction of more-stringent tissue-specific or regulatable vectors.
                Bookmark

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                14 March 2011
                18 April 2011
                8 September 2011
                8 March 2012
                : 30
                : 36
                : 3833-3845
                Affiliations
                [1 ]Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
                [2 ]The University of Texas, Department of Nutritional Sciences, Austin, Texas, USA
                [3 ]Program in Molecular Carcinogenesis, The Graduate School for Biological Sciences, Houston, Texas, USA
                [4 ]Max Planck Institute for Molecular Biomedicine, Munster, Germany
                Author notes
                Correspondence: Dean Tang, Department of Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA. Tel: (512) 237-9575; Fax: (512) 237-2475; dtang@ 123456mdanderson.org . Collene Jeter, Ph.D. Department of Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA. Tel: (512) 237-6402; Fax: (512) 237-2475; cjeter@ 123456mdanderson.org
                Article
                nihpa277847
                10.1038/onc.2011.114
                3140601
                21499299
                f4051b35-8360-4b89-a2b7-a1f38f98e3ce

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Funded by: National Institute of Environmental Health Sciences : NIEHS
                Award ID: R21 CA150009-02 ||CA
                Funded by: National Cancer Institute : NCI
                Funded by: National Institute of Environmental Health Sciences : NIEHS
                Award ID: R01 ES015888-04 ||ES
                Categories
                Article

                Oncology & Radiotherapy
                castration resistance,nanog,self-renewal,prostate cancer,cancer stem cells
                Oncology & Radiotherapy
                castration resistance, nanog, self-renewal, prostate cancer, cancer stem cells

                Comments

                Comment on this article