11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cornel Iridoid Glycoside Alleviates Microglia-Mediated Inflammatory Response via the NLRP3/Calpain Pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4272539e101">Vascular dementia (VaD) is associated with cerebral hypoperfusion, which results in long-term cognitive impairment and memory loss. Cornel iridoid glycoside (CIG) is the major active constituent isolated from the ripe fruit of Cornus officinalis. Previous studies have shown that CIG enhances neurological function in VaD rats. In the present research, we attempted to clarify the molecular processes underlying the role of CIG in neuroinflammation in VaD. We created a chronic cerebral ischemia rat model by ligation of the bilateral common carotid arteries (2VO) and then treated rats with different concentrations of CIG. Comprehensive analyses revealed that CIG ameliorated myelin integrity and neuronal loss. Furthermore, we also found that CIG inhibited polarized microglia activation and attenuated inflammasome-mediated production of proinflammatory cytokines in BV2 microglia cells induced by LPS/IFN-γ and in the brains of 2VO rats. To further elucidate the role of CIG in microglia-mediated inflammatory response, we investigated the expression and activity of calpain. CIG inhibited the expression and activity of calpain 1/2, which was characterized by decreased calpastatin and spectrin αII expression. In particular, intra- and extracellular calpain 1 levels were reduced by CIG. However, CIG showed weak interaction with calpain 1. In addition, we found that CG administration significantly repressed the assembly of the NOD-like receptor protein 3 (NLRP3) inflammasome, including NLRP3, ASC, and caspase-1. In conclusion, our knowledge of the mechanisms by which CIG regulates NLRP3/calpain signaling to influence inflammatory responses offers further insights into potential therapeutic strategies to treat VaD. </p>

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism and Regulation of NLRP3 Inflammasome Activation.

          Members of the nucleotide-binding domain and leucine-rich repeat (LRR)-containing (NLR) family and the pyrin and HIN domain (PYHIN) family can form multiprotein complexes termed 'inflammasomes'. The biochemical function of inflammasomes is to activate caspase-1, which leads to the maturation of interleukin 1 beta (IL-1β) and IL-18 and the induction of pyroptosis, a form of cell death. Unlike other inflammasomes, the NLRP3 inflammasome can be activated by diverse stimuli. The importance of the NLRP3 inflammasome in immunity and human diseases has been well documented, but the mechanism and regulation of its activation remain unclear. In this review we summarize current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammasome pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia Function in the Central Nervous System During Health and Neurodegeneration.

            Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases.

              One of the most striking hallmarks shared by various neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease (AD), and amyotrophic lateral sclerosis, is microglia-mediated neuroinflammation. Increasing evidence indicates that microglial activation in the central nervous system is heterogeneous, which can be categorized into two opposite types: M1 phenotype and M2 phenotype. Depending on the phenotypes activated, microglia can produce either cytotoxic or neuroprotective effects. In this review, we focus on the potential role of M1 and M2 microglia and the dynamic changes of M1/M2 phenotypes that are critically associated with the neurodegenerative diseases. Generally, M1 microglia predominate at the injury site at the end stage of disease, when the immunoresolution and repair process of M2 microglia are dampened. This phenotype transformation is very complicated in AD due to the phagocytosis of regionally distributed β-amyloid (Aβ) plaque and tangles that are released into the extracellular space. The endogenous stimuli including aggregated α-synuclein, mutated superoxide dismutase, Aβ, and tau oligomers exist in the milieu that may persistently activate M1 pro-inflammatory responses and finally lead to irreversible neuron loss. The changes of microglial phenotypes depend on the disease stages and severity; mastering the stage-specific switching of M1/M2 phenotypes within appropriate time windows may provide better therapeutic benefit.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                September 28 2022
                September 14 2022
                September 28 2022
                : 70
                : 38
                : 11967-11980
                Affiliations
                [1 ]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
                Article
                10.1021/acs.jafc.2c03851
                36104266
                f4877066-55c7-4079-85bb-2b8832e66517
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article