24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-response βγ power predicts the degree of choice-based learning in internally guided decision-making

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Choosing an option increases a person’s preference for that option. This phenomenon, called choice-based learning (CBL), has been investigated separately in the contexts of internally guided decision-making (IDM, e.g., preference judgment), for which no objectively correct answer exists, and externally guided decision making (EDM, e.g., perceptual decision making), for which one objectively correct answer exists. For the present study, we compared decision making of these two types to examine differences of underlying neural processes of CBL. As IDM and EDM tasks, occupation preference judgment and salary judgment were used, respectively. To compare CBL for the two types of decision making, we developed a novel measurement of CBL: decision consistency. When CBL occurs, decision consistency is higher in the last-half trials than in first-half trials. Electroencephalography (EEG) data have demonstrated that the change of decision consistency is positively correlated with the fronto-central beta–gamma power after response in the first-half trials for IDM, but not for EDM. Those results demonstrate for the first time the difference of CBL between IDM and EDM. The fronto-central beta–gamma power is expected to reflect a key process of CBL, specifically for IDM.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Human fronto-mesolimbic networks guide decisions about charitable donation.

          Humans often sacrifice material benefits to endorse or to oppose societal causes based on moral beliefs. Charitable donation behavior, which has been the target of recent experimental economics studies, is an outstanding contemporary manifestation of this ability. Yet the neural bases of this unique aspect of human altruism, which extends beyond interpersonal interactions, remain obscure. In this article, we use functional magnetic resonance imaging while participants anonymously donated to or opposed real charitable organizations related to major societal causes. We show that the mesolimbic reward system is engaged by donations in the same way as when monetary rewards are obtained. Furthermore, medial orbitofrontal-subgenual and lateral orbitofrontal areas, which also play key roles in more primitive mechanisms of social attachment and aversion, specifically mediate decisions to donate or to oppose societal causes. Remarkably, more anterior sectors of the prefrontal cortex are distinctively recruited when altruistic choices prevail over selfish material interests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops.

            Evaluation of both immediate and future outcomes of one's actions is a critical requirement for intelligent behavior. Using functional magnetic resonance imaging (fMRI), we investigated brain mechanisms for reward prediction at different time scales in a Markov decision task. When human subjects learned actions on the basis of immediate rewards, significant activity was seen in the lateral orbitofrontal cortex and the striatum. When subjects learned to act in order to obtain large future rewards while incurring small immediate losses, the dorsolateral prefrontal cortex, inferior parietal cortex, dorsal raphe nucleus and cerebellum were also activated. Computational model-based regression analysis using the predicted future rewards and prediction errors estimated from subjects' performance data revealed graded maps of time scale within the insula and the striatum: ventroanterior regions were involved in predicting immediate rewards and dorsoposterior regions were involved in predicting future rewards. These results suggest differential involvement of the cortico-basal ganglia loops in reward prediction at different time scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities.

              Network oscillations support transient communication across brain structures. We show here, in rats, that task-related neuronal activity in the medial prefrontal cortex (PFC), the hippocampus, and the ventral tegmental area (VTA), regions critical for working memory, is coordinated by a 4 Hz oscillation. A prominent increase of power and coherence of the 4 Hz oscillation in the PFC and the VTA and its phase modulation of gamma power in both structures was present in the working memory part of the task. Subsets of both PFC and hippocampal neurons predicted the turn choices of the rat. The goal-predicting PFC pyramidal neurons were more strongly phase locked to both 4 Hz and hippocampal theta oscillations than nonpredicting cells. The 4 Hz and theta oscillations were phase coupled and jointly modulated both gamma waves and neuronal spikes in the PFC, the VTA, and the hippocampus. Thus, multiplexed timing mechanisms in the PFC-VTA-hippocampus axis may support processing of information, including working memory. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                31 August 2016
                2016
                : 6
                : 32477
                Affiliations
                [1 ]Department of Psychology, Graduate School of Education, Hiroshima University , Hiroshima, Japan
                [2 ]Department of Psychiatry and Neurosciences, Institute of Biomedical & Health Sciences, Hiroshima University , Hiroshima, Japan
                [3 ]Center of KANSEI Innovation, Hiroshima University , Hiroshima, Japan
                [4 ]Department of Psychology, Graduate School of Environment, Nagoya University , Nagoya, Aichi, Japan
                [5 ]Faculty of Education, Hiroshima University , Hiroshima, Japan
                [6 ]Institute of Mental Health Research, University of Ottawa , Ottawa, Canada
                Author notes
                Article
                srep32477
                10.1038/srep32477
                5006019
                27576670
                f4a18f03-bcda-4f42-9137-70eaca30e49d
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 April 2016
                : 09 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article