59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Membrane transporters and drought resistance – a complex issue

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic Acid synthesis and response.

          Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant aquaporins: membrane channels with multiple integrated functions.

            Aquaporins are channel proteins present in the plasma and intracellular membranes of plant cells, where they facilitate the transport of water and/or small neutral solutes (urea, boric acid, silicic acid) or gases (ammonia, carbon dioxide). Recent progress was made in understanding the molecular bases of aquaporin transport selectivity and gating. The present review examines how a wide range of selectivity profiles and regulation properties allows aquaporins to be integrated in numerous functions, throughout plant development, and during adaptations to variable living conditions. Although they play a central role in water relations of roots, leaves, seeds, and flowers, aquaporins have also been linked to plant mineral nutrition and carbon and nitrogen fixation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.

              Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                04 December 2014
                2014
                : 5
                : 687
                Affiliations
                [1] 1Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznań, Poland
                [2] 2Laboratory of Molecular Biology, Department of Biochemistry and Biotechnology, University of Life Sciences Poznań, Poland
                Author notes

                Edited by: Markus Geisler, University of Fribourg, Switzerland

                Reviewed by: Maria Cristina Bonza, University of Milano, Italy; Enrico Martinoia, Universitaet Zuerich, Switzerland

                *Correspondence: Michał Jasiński, Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland e-mail: jasinski@ 123456ibch.poznan.pl

                This article was submitted to Plant Traffic and Transport, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00687
                4255493
                25538721
                f4ab924c-5b8b-4819-916a-b69e97034e5a
                Copyright © 2014 Jarzyniak and Jasiński.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 October 2014
                : 18 November 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 157, Pages: 15, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                drought avoidance,drought tolerance,transmembrane allocation,transport systems,abscisic acid

                Comments

                Comment on this article