62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function

      research-article
      , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C 2C 12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD + to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacological approaches to restore mitochondrial function.

          Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders but also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson's disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models as well as multicellular organisms have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for several diseases, which has spurred active drug discovery efforts in this area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnesium in disease prevention and overall health.

            Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation and has been recognized as a cofactor for >300 metabolic reactions in the body. Some of the processes in which magnesium is a cofactor include, but are not limited to, protein synthesis, cellular energy production and storage, reproduction, DNA and RNA synthesis, and stabilizing mitochondrial membranes. Magnesium also plays a critical role in nerve transmission, cardiac excitability, neuromuscular conduction, muscular contraction, vasomotor tone, blood pressure, and glucose and insulin metabolism. Because of magnesium's many functions within the body, it plays a major role in disease prevention and overall health. Low levels of magnesium have been associated with a number of chronic diseases including migraine headaches, Alzheimer's disease, cerebrovascular accident (stroke), hypertension, cardiovascular disease, and type 2 diabetes mellitus. Good food sources of magnesium include unrefined (whole) grains, spinach, nuts, legumes, and white potatoes (tubers). This review presents recent research in the areas of magnesium and chronic disease, with the goal of emphasizing magnesium's role in disease prevention and overall health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of mitochondrial biogenesis and PGC-1α under cellular stress.

              Tina Wenz (2013)
              Cell function relies on the constant supply of ATP and it is crucial that mitochondrial ATP production adapts to environmental and cellular challenges to maintain cellular function. Key molecules in sensing cellular stress situations seem to be the PGC-family of transcriptional co-activators, which are key regulators of mitochondrial biogenesis. Recent work has identified several stress-regulated pathways that affect mitochondrial biogenesis through modulation of the activity of PGC-1α. This review focuses on caloric restriction, hypoxia as well as the role of reactive oxygen species in regulating mitochondrial biogenesis and how this process is linked to other cellular stress responses. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 June 2015
                2015
                : 10
                : 6
                : e0129972
                Affiliations
                [001]Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Korea
                Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo-CSIC, SPAIN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BGH YHS. Performed the experiments: BGH JEP HJC. Analyzed the data: BGH JEP HJC YHS. Wrote the paper: BGH YHS.

                Article
                PONE-D-14-44102
                10.1371/journal.pone.0129972
                4466323
                26068191
                f4b19f2a-56f2-4763-8ebc-9a662f0098b3
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 9 October 2014
                : 14 May 2015
                Page count
                Figures: 6, Tables: 0, Pages: 16
                Funding
                This research was supported by a grant (technical development for supporting the DSW industry) from the Ministry of Oceans and Fisheries of the Republic of Korea.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its supporting information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article