36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multidimensional analysis of Drosophila wing variation in Evolution Canyon

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp90 as a capacitor of phenotypic variation.

          Heat-shock protein 90 (Hsp90) chaperones the maturation of many regulatory proteins and, in the fruitfly Drosophila melanogaster, buffers genetic variation in morphogenetic pathways. Levels and patterns of genetic variation differ greatly between obligatorily outbreeding species such as fruitflies and self-fertilizing species such as the plant Arabidopsis thaliana. Also, plant development is more plastic, being coupled to environmental cues. Here we report that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation. The strength and breadth of Hsp90's effects on the buffering and release of genetic variation suggests it may have an impact on evolutionary processes. We also show that Hsp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes. Manipulating Hsp90's buffering capacity offers a tool for harnessing cryptic genetic variation and for elucidating the interplay between genotypes, environments and stochastic events in the determination of phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heritable variation and evolution under favourable and unfavourable conditions.

            Genetic variability in quantitative traits can change as a direct response to the environmental conditions in which they are expressed. Consequently, similar selection in different environments might not be equally effective in leading to adaptation. Several hypotheses, including recent ones that focus on the historical impact of selection on populations, predict that the expression of genetic variation will increase in unfavourable conditions. However, other hypotheses lead to the opposite prediction. Although a consensus is unlikely, recent Drosophila and bird studies suggest consistent trends for morphological traits under particular conditions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Multivariate Analysis in Ecology and Systematics: Panacea or Pandora's Box?

                Bookmark

                Author and article information

                Journal
                Journal of Genetics
                J Genet
                Springer Nature
                0022-1333
                0973-7731
                December 2008
                December 2008
                : 87
                : 4
                : 407-419
                Article
                10.1007/s12041-008-0063-x
                19147930
                f4ef0acd-154d-435f-a738-135c3c42794f
                © 2008
                History

                Comments

                Comment on this article