41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypothalamic tanycytes—masters and servants of metabolic, neuroendocrine, and neurogenic functions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurogenesis in the hypothalamus of adult mice: potential role in energy balance.

            Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans, and for reasons that are not understood, its effects persist after the cessation of treatment. Here we demonstrate that centrally administered CNTF induces cell proliferation in feeding centers of the murine hypothalamus. Many of the newborn cells express neuronal markers and show functional phenotypes relevant for energy-balance control, including a capacity for leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Coadministration of the mitotic blocker cytosine-beta-d-arabinofuranoside (Ara-C) eliminates the proliferation of neural cells and abrogates the long-term, but not the short-term, effect of CNTF on body weight. These findings link the sustained effect of CNTF on energy balance to hypothalamic neurogenesis and suggest that regulated hypothalamic neurogenesis in adult mice may play a previously unappreciated role in physiology and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tanycytes of the Hypothalamic Median Eminence Form a Diet-Responsive Neurogenic Niche

              Adult hypothalamic neurogenesis has been recently reported, but the cell of origin and function of these newborn neurons are unknown. We utilize genetic fate mapping to show that median eminence tanycytes generate newborn neurons; blocking this neurogenesis alters weight and metabolic activity in adult mice. These findings describe a previously unreported neurogenic niche within the mammalian hypothalamus with important implications for metabolism.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                29 October 2015
                2015
                : 9
                : 387
                Affiliations
                School of Biological Sciences, University of East Anglia Norwich, UK
                Author notes

                Edited by: Marc Claret, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain

                Reviewed by: Margarita Pérez-Martín, Malaga University, Spain; Matei Bolborea, University of Warwick, UK

                *Correspondence: Mohammad K. Hajihosseini m.k.h@ 123456uea.ac.uk

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2015.00387
                4624852
                26578855
                f5982f76-4678-4a36-bc56-676096a60c78
                Copyright © 2015 Goodman and Hajihosseini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 August 2015
                : 05 October 2015
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 76, Pages: 9, Words: 7484
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/L003406/1
                Categories
                Endocrinology
                Review

                Neurosciences
                tanycytes,postnatal neurogenesis,barrier function,neuroendocrine,appetite and energy expenditure

                Comments

                Comment on this article