102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children : A Systematic Review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relationship among physical activity (PA), fitness, cognitive function, and academic achievement in children is receiving considerable attention. The utility of PA to improve cognition and academic achievement is promising but uncertain; thus, this position stand will provide clarity from the available science.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: found

          Executive Functions

          Executive functions (EFs) make possible mentally playing with ideas; taking the time to think before acting; meeting novel, unanticipated challenges; resisting temptations; and staying focused. Core EFs are inhibition [response inhibition (self-control—resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). The developmental progression and representative measures of each are discussed. Controversies are addressed (e.g., the relation between EFs and fluid intelligence, self-regulation, executive attention, and effortful control, and the relation between working memory and inhibition and attention). The importance of social, emotional, and physical health for cognitive health is discussed because stress, lack of sleep, loneliness, or lack of exercise each impair EFs. That EFs are trainable and can be improved with practice is addressed, including diverse methods tried thus far.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular fitness, cortical plasticity, and aging.

            Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial.

              This experiment tested the hypothesis that exercise would improve executive function. Sedentary, overweight 7- to 11-year-old children (N = 171, 56% girls, 61% Black, M ± SD age = 9.3 ± 1.0 years, body mass index [BMI] = 26 ± 4.6 kg/m², BMI z-score = 2.1 ± 0.4) were randomized to 13 ± 1.6 weeks of an exercise program (20 or 40 min/day), or a control condition. Blinded, standardized psychological evaluations (Cognitive Assessment System and Woodcock-Johnson Tests of Achievement III) assessed cognition and academic achievement. Functional MRI measured brain activity during executive function tasks. Intent to treat analysis revealed dose-response benefits of exercise on executive function and mathematics achievement. Preliminary evidence of increased bilateral prefrontal cortex activity and reduced bilateral posterior parietal cortex activity attributable to exercise was also observed. Consistent with results obtained in older adults, a specific improvement on executive function and brain activation changes attributable to exercise were observed. The cognitive and achievement results add evidence of dose-response and extend experimental evidence into childhood. This study provides information on an educational outcome. Besides its importance for maintaining weight and reducing health risks during a childhood obesity epidemic, physical activity may prove to be a simple, important method of enhancing aspects of children's mental functioning that are central to cognitive development. This information may persuade educators to implement vigorous physical activity. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2016
                June 2016
                : 48
                : 6
                : 1197-1222
                Article
                10.1249/MSS.0000000000000901
                4874515
                27182986
                f5d120cc-e0c8-4b6f-b790-0e2e0898af62
                © 2016
                History

                Comments

                Comment on this article