59
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Nucleic Acid–Based Tests for Point-of-Care Detection of Malaria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria remains a serious disease in the developing world. There is a growing consensus that new diagnostics are needed in low-resource settings. The ideal malaria diagnostic should be able to speciate; measure parasitemia; low-cost, quick, and simple to use; and capable of detecting low-level infections. A promising development are nucleic acid tests (NATs) for the diagnosis of malaria, which are well suited for point-of-care use because of their ability to detect low-level infections and speciate, and because they have high sensitivity and specificity. The greatest barrier to NAT use in the past has been its relatively high cost, and the amount of infrastructure required in the form of equipment, stable power, and reagent storage. This review describes recent developments to decrease the cost and run time, and increase the ease of use of NAT while maintaining their high sensitivity and specificity and low limit of detection at the point-of-care.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          The global distribution of clinical episodes of Plasmodium falciparum malaria.

          Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation.

            The loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method that uses only one type of enzyme. One of the characteristics of the LAMP method is its ability to synthesize extremely large amount of DNA. Accordingly, a large amount of by-product, pyrophosphate ion, is produced, yielding white precipitate of magnesium pyrophosphate in the reaction mixture. Judging the presence or absence of this white precipitate allows easy distinction of whether nucleic acid was amplified by the LAMP method. Since an increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction was achieved by real-time measurement of turbidity. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT).

              The absolute necessity for rational therapy in the face of rampant drug resistance places increasing importance on the accuracy of malaria diagnosis. Giemsa microscopy and rapid diagnostic tests (RDTs) represent the two diagnostics most likely to have the largest impact on malaria control today. These two methods, each with characteristic strengths and limitations, together represent the best hope for accurate diagnosis as a key component of successful malaria control. This review addresses the quality issues with current malaria diagnostics and presents data from recent rapid diagnostic test trials. Reduction of malaria morbidity and drug resistance intensity plus the associated economic loss of these two factors require urgent scaling up of the quality of parasite-based diagnostic methods. An investment in anti-malarial drug development or malaria vaccine development should be accompanied by a parallel commitment to improve diagnostic tools and their availability to people living in malarious areas.
                Bookmark

                Author and article information

                Journal
                Am J Trop Med Hyg
                Am. J. Trop. Med. Hyg
                tpmd
                The American Journal of Tropical Medicine and Hygiene
                The American Society of Tropical Medicine and Hygiene
                0002-9637
                1476-1645
                01 August 2012
                01 August 2012
                : 87
                : 2
                : 223-230
                Affiliations
                Department of Bioengineering, Rice University, Houston, Texas
                Author notes
                *Address correspondence to Michael S. Cordray, Department of Bioengineering, Rice University, 6500 Main Street, MS-142, Houston, TX 77030. E-mail: mikec@ 123456rice.edu
                Article
                10.4269/ajtmh.2012.11-0685
                3414556
                22855751
                f5d59b02-baf7-4e62-bd09-093ba1202d11
                ©The American Society of Tropical Medicine and Hygiene

                This is an Open Access article distributed under the terms of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 November 2011
                : 02 May 2012
                Categories
                Review
                Articles

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article