13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stallion fertility: A focus on the spermatozoon : Stallion fertility

      1 , 2 , 2
      Equine Veterinary Journal
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Sequence and structure of a human glucose transporter.

          The amino acid sequence of the glucose transport protein from human HepG2 hepatoma cells was deduced from analysis of a complementary DNA clone. Structural analysis of the purified human erythrocyte glucose transporter by fast atom bombardment mapping and gas phase Edman degradation confirmed the identity of the clone and demonstrated that the HepG2 and erythrocyte transporters are highly homologous and may be identical. The protein lacks a cleavable amino-terminal signal sequence. Analysis of the primary structure suggests the presence of 12 membrane-spanning domains. Several of these may form amphipathic alpha helices and contain abundant hydroxyl and amide side chains that could participate in glucose binding or line a transmembrane pore through which the sugar moves. The amino terminus, carboxyl terminus, and a highly hydrophilic domain in the center of the protein are all predicted to lie on the cytoplasmic face. Messenger RNA species homologous to HepG2 glucose transporter messenger RNA were detected in K562 leukemic cells, HT29 colon adenocarcinoma cells, and human kidney tissue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics.

            Haploid male germ cells package their DNA into a volume that is typically 10% or less that of a somatic cell nucleus. To achieve this remarkable level of compaction, spermatozoa replace most of their histones with smaller, highly basic arginine and (in eutherians) cysteine rich protamines. One reason for such a high level of compaction is that it may help optimise nuclear shape and hence support the gametes' swimming ability for the long journey across the female reproductive tract to the oocyte. Super-compaction of the genome may confer additional protection from the effects of genotoxic factors. However, many species including the human retain a fraction of their chromatin in the more relaxed nucleosomal configuration that appears to run counter to the ergonomic, toroidal and repackaging of sperm DNA. Recent research suggests that the composition of this 'residual' nucleosomal compartment, a generally overlooked feature of the male gamete, is far more significant and important than previously thought. In this respect, the transport and incorporation of modified paternal histones by the spermatozoon to the zygote has been demonstrated and indicates another potential paternal effect in the epigenetic reprogramming of the zygote following fertilisation that is independent of imprinting status. In this review, the most recent research into mammalian spermatozoal chromatin composition is discussed alongside evidence for conserved, non-randomly located nucleosomal domains in spermatozoal nuclei, all supporting the hypothesis that the spermatozoon delivers a novel epigenetic signature to the egg that may be crucial for normal development. We also provide some thoughts on why this signature may be required in early embryogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis.

              Whereas studies have revealed that the cryopreservation of human semen increases sperm DNA fragmentation, the mechanisms involved in this type of cryo-injury are largely unknown. Elucidation of these mechanisms may provide insight into preventing such injury. We obtained 60 semen samples from 60 men and conducted experiments to determine the cause of cryopreservation-induced DNA fragmentation using 8-oxo-7,8-dihydro-2'deoxyguanosine (8OHdG) as a biomarker of oxidative stress, percentage caspase positive cells as an indicator of apoptosis, the potential antioxidant genistein and the caspase inhibitor Z-VAD(OMe)-FMK. Cryopreservation led to a significant increase in percentage DNA fragmentation, percentage 8OHdG and percentage caspase positive cells (P < 0.001). Percentage DNA fragmentation was positively correlated with percentage 8OHdG before (r = 0.756, P < 0.001) and after cryopreservation (r = 0.528, P = 0.017). The addition of 50 and 100 microM genistein to the cryoprotectant had a significant protective effect on sperm DNA (P < 0.001) although the caspase inhibitor demonstrated no difference to the control. Human sperm DNA fragmentation is associated with an increase in oxidative stress during cryopreservation, rather than the activation of caspases and apoptosis. The estrogenic compound genistein may be useful in reducing this effect but larger trials are needed to confirm this.
                Bookmark

                Author and article information

                Journal
                Equine Veterinary Journal
                Equine Vet J
                Wiley
                04251644
                January 2015
                January 2015
                August 18 2014
                : 47
                : 1
                : 16-24
                Affiliations
                [1 ]Department of Large Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station USA
                [2 ]School of Environmental and Life Sciences, Discipline of Biological Sciences; University of Newcastle; Callaghan New South Wales Australia
                Article
                10.1111/evj.12308
                24943233
                f60af44a-85ba-40e7-b8a7-6e018c3006d5
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article