26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volumetric analysis of cerebrospinal fluid and brain parenchyma in a patient with hydranencephaly and macrocephaly – case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to perform for the first time the intracranial volumetric analysis of cerebrospinal fluid (CSF) and brain parenchyma in the supratentorial and infratentorial space in a 30-year-old female patient with hydranencephaly and macrocephaly. A head scan performed using a 3T magnetic resonance was followed by manual segmentation of the brain parenchyma and CSF on T2 coronal brain sections. The volume of CSF and brain parenchyma was measured separately for the supratentorial and infratentorial space. The total volume of the intracranial space was 3645.5 cm 3. In the supratentorial space, the volume of CSF was 3375.2 cm 3 and the volume of brain parenchyma was 80.3 cm 3. In the infratentorial space, the volume of CSF was 101.3 cm 3 and the volume of the brain parenchyma was 88.7 cm 3. In the supratentorial space, there was severe malacia of almost all brain parenchyma with no visible remnants of the choroid plexuses. Infratentorial structures of the brainstem and cerebellum were hypoplastic but completely developed. Since our patient had no choroid plexuses in the supratentorial space and no obstruction between dural sinuses and CSF, development of hydrocephalus and macrocephaly cannot be explained by the classic hypothesis of CSF physiology with secretion, unidirectional circulation, and absorption as its basic postulates. However, the origin and turnover of the enormous amount of intracranial CSF volume, at least 10-fold larger than normal, and the mechanisms of macroencephaly development could be elucidated by the new hypothesis of CSF physiology recently published by our research team.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations.

          The first scientific and experimental approaches to the study of cerebrospinal fluid (CSF) formation began almost a hundred years ago. Despite researchers being interested for so long, some aspects of CSF formation are still insufficiently understood. Today it is generally believed that CSF formation is an active energy consuming metabolic process which occurs mainly in brain ventricles, in choroid plexuses. CSF formation, together with CSF absorption and circulation, represents the so-called classic hypothesis of CSF hydrodynamics. In spite of the general acceptance of this hypothesis, there is a considerable series of experimental results that do not support the idea of the active nature of CSF formation and the idea that choroid plexuses inside the brain ventricles are the main places of formation. The main goal of this review is to summarize the present understanding of CSF formation and compare this understanding to contradictory experimental results that have been obtained so far. And finally, to try to offer a physiological explanation by which these contradictions could be avoided. We therefore analyzed the main methods that study CSF formation, which enabled such an understanding, and presented their shortcomings, which could also be a reason for the erroneous interpretation of the obtained results. A recent method of direct aqueductal determination of CSF formation is shown in more detail. On the one hand, it provides the possibility of direct insight into CSF formation, and on the other, it clearly indicates that there is no net CSF formation inside the brain ventricles. These results are contradictory to the classic hypothesis and, together with other mentioned contradictory results, strongly support a recently proposed new working hypothesis on the hydrodynamics of CSF. According to this new working hypothesis, CSF is permanently produced and absorbed in the whole CSF system as a consequence of filtration and reabsorption of water volume through the capillary walls into the surrounding brain tissue. The CSF exchange between the entire CSF system and the surrounding tissue depends on (patho)physiological conditions that predominate within those compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent insights into a new hydrodynamics of the cerebrospinal fluid.

            According to the traditional hypothesis, the cerebrospinal fluid (CSF) is secreted inside the brain ventricles and flows unidirectionally along subarachnoid spaces to be absorbed into venous sinuses across arachnoid villi and/or via paraneural sheaths of nerves into lymphatics. However, according to recent investigations, it appears that interstitial fluid (ISF) and CSF are formed by water filtration across the walls of arterial capillaries in the central nervous system (CNS), while plasma osmolytes are sieved (retained) so that capillary osmotic counterpressure is generated, which is instrumental in ISF/CSF water absorption into venous capillaries and postcapillary venules. This hypothesis is supported by experiments showing that water, which constitutes 99% of CSF and ISF bulk, does not flow along CSF spaces since it is rapidly absorbed into adjacent CNS microvessels, while distribution of other substances along CSF spaces depends on the rate of their removal into microvessels: faster removal means more limited distribution. Furthermore, the acute occlusion of aqueduct of Sylvius does not change CSF pressure in isolated ventricles, suggesting that the formation and the absorption of CSF are in balance. Multidirectional distribution of substances inside CSF, as well as between CSF and ISF, is caused by to-and-fro pulsations of these fluids and their mixing. Absorption of CSF into venous sinuses and/or lymphatics under the physiological pressure should be of minor importance due to their minute surface area in comparison to the huge absorptive surface area of microvessels. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Water transport between CNS compartments: contributions of aquaporins and cotransporters.

              Large water fluxes continuously take place between the different compartments of the brain as well as between the brain parenchyma and the blood or cerebrospinal fluid. This water flux is tightly regulated but may be disturbed under pathological conditions that lead to brain edema formation or hydrocephalus. The molecular pathways by which water molecules cross the cell membranes of the brain are not well-understood, although the discovery of aquaporin 4 (AQP4) in the brain improved our understanding of some of these transport processes, particularly under pathological conditions. In the present review we introduce another family of transport proteins as water transporters, namely the cotransporters and the glucose uniport GLUT1. In direct contrast to the aquaporins, these proteins have an inherent ability to transport water against an osmotic gradient. Some of them may also function as water pores in analogy to the aquaporins. The putative role of cotransport proteins and uniports for the water flux into the glial cells, through the choroid plexus and across the endothelial cells of the blood-brain-barrier will be discussed and compared to the contribution of the aquaporins. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Croat Med J
                Croat. Med. J
                CMJ
                Croatian Medical Journal
                Croatian Medical Schools
                0353-9504
                1332-8166
                August 2014
                : 55
                : 4
                : 388-393
                Affiliations
                [1 ]Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
                [2 ]Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
                [3 ]Special Hospital for Chronic Children Diseases, Gornja Bistra, Bistra, Croatia
                [4 ]Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
                [* ]These authors equally contributed to the study.
                Author notes
                Correspondence to: 
Marijan Klarica
University of Zagreb, School of Medicine
Department of Pharmacology and Croatian Institute for Brain Research
Šalata 11
10 000 Zagreb, Croatia
 mklarica@ 123456mef.hr
                Article
                CroatMedJ_55_0388
                10.3325/cmj.2014.55.388
                4157378
                25165052
                f6224327-48cb-4f48-a043-52f42a2e038e
                Copyright © 2014 by the Croatian Medical Journal. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 June 2014
                : 11 July 2014
                Categories
                Case Report

                Medicine
                Medicine

                Comments

                Comment on this article