14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emissions and long-range transport of mineral dust and combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on the interannual variability and possible trends of combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017). The decade-long record of aerosol optical depth (AOD, denoted as τ), separately for combustion aerosol ( τ c) and dust ( τ d), over global oceans is derived from the Collection 6 aerosol products of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both Terra and Aqua. These MODIS Aqua datasets, complemented by aerosol source-tagged simulations using the Community Atmospheric Model version 5 (CAM5), are then analyzed to understand the interannual variability and potential trends of τ c and τ d in the major continental outflows. Both MODIS and CAM5 consistently yield a similar decreasing trend of −0.017 to −0.020 per decade for τ c over the North Atlantic Ocean and the Mediterranean Sea that is attributable to reduced emissions from North America and Europe, respectively. On the contrary, both MODIS and CAM5 display an increasing trend of +0.017 to +0.036 per decade for τ c over the tropical Indian Ocean, the Bay of Bengal, and the Arabian Sea, which reflects the influence of increased anthropogenic emissions from South Asia and the Middle East in the last 2 decades. Over the northwestern Pacific Ocean, which is often affected by East Asian emissions of pollution and dust, the MODIS retrievals show a decreasing trend of −0.021 per decade for τ c and −0.012 per decade for τ d, which is, however, not reproduced by the CAM5 model. In other outflow regions strongly influenced by biomass burning smoke or dust, both MODIS retrievals and CAM5 simulations show no statistically significant trends; the MODIS-observed interannual variability is usually larger than that of the CAM5 simulation.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

            The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global iron connections between desert dust, ocean biogeochemistry, and climate.

              The environmental conditions of Earth, including the climate, are determined by physical, chemical, biological, and human interactions that transform and transport materials and energy. This is the "Earth system": a highly complex entity characterized by multiple nonlinear responses and thresholds, with linkages between disparate components. One important part of this system is the iron cycle, in which iron-containing soil dust is transported from land through the atmosphere to the oceans, affecting ocean biogeochemistry and hence having feedback effects on climate and dust production. Here we review the key components of this cycle, identifying critical uncertainties and priorities for future research.
                Bookmark

                Author and article information

                Journal
                101214388
                38670
                Atmos Chem Phys
                Atmos Chem Phys
                Atmospheric chemistry and physics
                1680-7316
                1680-7324
                7 November 2020
                3 January 2020
                January 2020
                16 November 2020
                : 20
                : 1
                : 139-161
                Affiliations
                [1 ]Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
                [2 ]Pacific Northwest National Laboratory, Richland, WA, USA
                [3 ]Bay Area Environmental Research Institute, Petaluma, CA, USA
                [4 ]NASA Ames Research Center, Moffett Field, CA, USA
                [5 ]Joint Center for Earth Science & Technology, University of Maryland at Baltimore County, Baltimore, MD, USA
                Author notes
                Correspondence: Hongbin Yu ( hongbin.yu@ 123456nasa.gov )

                Author contributions. HY conceived the project and derived the MODIS combustion and dust AOD with help and input from QT, MC, LAR, and RCL. YY, HW, and SJS designed and ran the CAM5 simulations. HY and YY led the satellite and model integrated analysis and wrote the first draft of the paper. All other coauthors participated in discussions on data analysis and revised the paper.

                Article
                NASAPA1643830
                10.5194/acp-20-139-2020
                7668156
                33204243
                f6312320-1dce-45ce-b5be-e3fba1c82bcd

                This work is distributed under the Creative Commons Attribution 4.0 License.

                History
                Categories
                Article

                Comments

                Comment on this article