9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebrovascular reactivity (CVR), is important for determining future risk of cerebrovascular disease. It is unclear if primary aging is associated with reductions in CVR because previous studies often include participants with vascular risk factors. Additionally, the inconsistency in the literature may be due to the inherent difficulty in quantifying intracranial cerebral blood flow and CVR. To address these limitations, we determined the effect of age on CVR in the large intracranial vessels in adults with low vascular risk using state-of-the-art MRI techniques. We also determined if the effect of age on CVR was sex-specific. Young ( n = 20; 25 ± 3 years) and older ( n = 19; 61 ± 5 years) healthy, physically active adults participated in the study. CVR was measured in response to hypercapnia using 4D flow MRI, which allows for simultaneous angiographic and quantitative blood flow measurements in the intracranial arteries. Older adults had lower global CVR and CVR in multiple intracranial arteries [right and left internal carotid arteries (ICA), right and left middle cerebral arteries (MCA), and basilar artery (BA)] compared with young adults ( p < 0.05 for all). In addition, the MCA dilated significantly in response to hypercapnia in young ( p < 0.05), but not older adults. Young men demonstrated higher global CVR and CVR in multiple intracranial arteries (ICAs, MCAs, and BA) compared with young women and older men ( p < 0.05 for both); however, CVR did not differ between young women and older women. Our results demonstrate that, using 4D flow MRI, primary aging is associated with lower CVR in adults with low vascular risk. In addition, the effect of age on CVR may be driven by men. The 4D flow MRI technique may provide a promising new alternative to measure cerebrovascular physiology without the limitations of commonly used techniques. Future studies could utilize this MRI technique to examine interventions to maintain CVR with advancing age. This study was registered under clinicaltrials.gov # NCT02840851.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries.

          In this report the authors describe a noninvasive transcranial method of determining the flow velocities in the basal cerebral arteries. Placement of the probe of a range-gated ultrasound Doppler instrument in the temporal area just above the zygomatic arch allowed the velocities in the middle cerebral artery (MCA) to be determined from the Doppler signals. The flow velocities in the proximal anterior (ACA) and posterior (PCA) cerebral arteries were also recorded at steady state and during test compression of the common carotid arteries. An investigation of 50 healthy subjects by this transcranial Doppler method revealed that the velocity in the MCA, ACA, and PCA was 62 +/- 12, 51 +/0 12, and 44 +/- 11 cm/sec, respectively. This method is of particular value for the detection of vasospasm following subarachnoid hemorrhage and for evaluating the cerebral circulation in occlusive disease of the carotid and vertebral arteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

            Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid-femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, P<0.002). Carotid-femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, P<0.001), grey matter (-0.079 ± 0.038 SD/SD, P = 0.038) and white matter (-0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid-femoral pulse wave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (-0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (-0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Godin-Shephard Leisure-Time Physical Activity Questionnaire

              The aim of this paper is to overview the development process of the Godin and Shephard leisuretime physical activity questionnaire, to present the questionnaire and how to compute an overall score as well as a score related to health benefits. The Health & Fitness Journal of Canada, Vol 4 No 1 (2011): Dr. Roy Shephard: A Tribute to the Dean of Exercise and Physical Activity Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                17 October 2019
                2019
                : 11
                : 281
                Affiliations
                [1] 1Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin–Madison , Madison, WI, United States
                [2] 2Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin–Madison , Madison, WI, United States
                [3] 3Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison , Madison, WI, United States
                [4] 4William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center , Madison, WI, United States
                Author notes

                Edited by: Eszter Farkas, University of Szeged, Hungary

                Reviewed by: Clare Howarth, The University of Sheffield, United Kingdom; Lena Vaclavu, Leiden University Medical Center, Netherlands

                *Correspondence: Jill N. Barnes, jnbarnes@ 123456wisc.edu
                Article
                10.3389/fnagi.2019.00281
                6811507
                31680935
                f659af96-f653-4330-9e3e-d28e567ed7e8
                Copyright © 2019 Miller, Howery, Rivera-Rivera, Johnson, Rowley, Wieben and Barnes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 July 2019
                : 01 October 2019
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 59, Pages: 11, Words: 0
                Funding
                Funded by: National Heart, Lung, and Blood Institute 10.13039/100000050
                Award ID: HL118154
                Categories
                Neuroscience
                Original Research

                Neurosciences
                cerebral blood flow,middle cerebral artery,cerebrovascular conductance,sex differences,neuroimaging

                Comments

                Comment on this article

                scite_

                Similar content221

                Cited by23

                Most referenced authors573