29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      “Sweet Flavonoids”: Glycosidase-Catalyzed Modifications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural flavonoids, especially in their glycosylated forms, are the most abundant phenolic compounds found in plants, fruit, and vegetables. They exhibit a large variety of beneficial physiological effects, which makes them generally interesting in a broad spectrum of scientific areas. In this review, we focus on recent advances in the modifications of the glycosidic parts of various flavonoids employing glycosidases, covering both selective trimming of the sugar moieties and glycosylation of flavonoid aglycones by natural and mutant glycosidases. Glycosylation of flavonoids strongly enhances their water solubility and thus increases their bioavailability. Antioxidant and most biological activities are usually less pronounced in glycosides, but some specific bioactivities are enhanced. The presence of l-rhamnose (6-deoxy-α- l-mannopyranose) in rhamnosides, rutinosides (rutin, hesperidin) and neohesperidosides (naringin) plays an important role in properties of flavonoid glycosides, which can be considered as “pro-drugs”. The natural hydrolytic activity of glycosidases is widely employed in biotechnological deglycosylation processes producing respective aglycones or partially deglycosylated flavonoids. Moreover, deglycosylation is quite commonly used in the food industry aiming at the improvement of sensoric properties of beverages such as debittering of citrus juices or enhancement of wine aromas. Therefore, natural and mutant glycosidases are excellent tools for modifications of flavonoid glycosides.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          The flavonoid quercetin in disease prevention and therapy: facts and fancies.

          Biochemical and genetic studies on cellular and animal models on the mechanism(s) of action of phytochemicals provide a functional explanation of how and why a diet rich in fruits and vegetables is considered healthy. It is not unusual to find molecules that protect against diseases, which greatly differ from a physiopathological point of view, such as cancer and cardiovascular disorders. Quercetin falls into this category and possesses a broad range of biological properties. Uptake, metabolism and circulating concentrations of quercetin and its metabolites suggest that a regular diet provides amounts of quercetin ( 10 μM) by supplementation with quercetin-enriched foods or supplements. Multiple lines of experimental evidence suggest a positive association between quercetin intake and improved outcomes of inflammatory cardiovascular risk. The ameliorating effect of quercetin administration can be extended to other chronic inflammatory disorders but only if supplementation occurs in patients. Quercetin can be considered the prototype of a naturally-occurring chemopreventive agent because of its key roles in triggering the "hallmarks of cancer". However, several critical points must be taken into account when considering the potential therapeutic use of this molecule: (1) pharmacological versus nutraceutical doses applied, (2) specificity of its mechanism of action compared to other phytochemicals, and (3) identification of "direct" cellular targets. The design of specific clinical trials is extremely warranted to depict possible applications of quercetin in adjuvant cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            STEREOCHEMISTRY AND THE MECHANISM OF ENZYMATIC REACTIONS

            D Koshland (1953)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isoquercitrin: pharmacology, toxicology, and metabolism.

              The flavonoid isoquercitrin (quercetin-3-O-β-d-glucopyranoside) is commonly found in medicinal herbs, fruits, vegetables and plant-derived foods and beverages. This article reviews the occurrence, preparation, bioavailability, pharmacokinetics, toxicology and biological activity of isoquercitrin and "enzymatically modified (α-glucosylated) isoquercitrin" (EMIQ). Pure isoquercitrin can now be obtained on a large scale by enzymatic rutin hydrolysis with α-l-rhamnosidase. Isoquercitrin has higher bioavailability than quercetin and displays a number of chemoprotective effects both in vitro and in vivo, against oxidative stress, cancer, cardiovascular disorders, diabetes and allergic reactions. Although small amounts of intact isoquercitrin can be found in plasma and tissues after oral application, it is extensively metabolized in the intestine and the liver. Biotransformation of isoquercitrin includes deglycosylation, followed by formation of conjugated and methylated derivatives of quercetin or degradation to phenolic acids and carbon dioxide. The acceptable daily intake of (95%) isoquercitrin and of EMIQ was estimated to be 5.4 and 4.9mg/kg/day, respectively. Adverse effects of higher doses in rats included mostly (benign) chromaturia; nevertheless some drug interactions may occur due to the modulation of the activity and/or expression of drug metabolizing/transporting systems. With respect to the safety, affordability and beneficial pharmacological activities, highly pure isoquercitrin is a prospective substance for food supplementation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                21 July 2018
                July 2018
                : 19
                : 7
                : 2126
                Affiliations
                Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; slamova.kristyna@ 123456gmail.com (K.S.); janakapesova@ 123456gmail.com (J.K.)
                Author notes
                [* ]Correspondence: kata.valentova@ 123456email.cz ; Tel.: +420-296-442-509
                Author information
                https://orcid.org/0000-0002-7714-5350
                Article
                ijms-19-02126
                10.3390/ijms19072126
                6073497
                30037103
                f66edbc0-e860-448a-a215-8e4d6a68c7c2
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 June 2018
                : 19 July 2018
                Categories
                Review

                Molecular biology
                enzymatic hydrolysis,quercetin,hesperetin,naringenin,rutinosidase,rhamnosidase,puerarin,catechin,icariin,transglycosylation

                Comments

                Comment on this article