55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis . We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis . We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental and analytical tools for studying the human microbiome.

          The human microbiome substantially affects many aspects of human physiology, including metabolism, drug interactions and numerous diseases. This realization, coupled with ever-improving nucleotide sequencing technology, has precipitated the collection of diverse data sets that profile the microbiome. In the past 2 years, studies have begun to include sufficient numbers of subjects to provide the power to associate these microbiome features with clinical states using advanced algorithms, increasing the use of microbiome studies both individually and collectively. Here we discuss tools and strategies for microbiome studies, from primer selection to bioinformatics analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DINAMelt web server for nucleic acid melting prediction

            The DINAMelt web server simulates the melting of one or two single-stranded nucleic acids in solution. The goal is to predict not just a melting temperature for a hybridized pair of nucleic acids, but entire equilibrium melting profiles as a function of temperature. The two molecules are not required to be complementary, nor must the two strand concentrations be equal. Competition among different molecular species is automatically taken into account. Calculations consider not only the heterodimer, but also the two possible homodimers, as well as the folding of each single-stranded molecule. For each of these five molecular species, free energies are computed by summing Boltzmann factors over every possible hybridized or folded state. For temperatures within a user-specified range, calculations predict species mole fractions together with the free energy, enthalpy, entropy and heat capacity of the ensemble. Ultraviolet (UV) absorbance at 260 nm is simulated using published extinction coefficients and computed base pair probabilities. All results are available as text files and plots are provided for species concentrations, heat capacity and UV absorbance versus temperature. This server is connected to an active research program and should evolve as new theory and software are developed. The server URL is .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence.

              Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 September 2013
                : 8
                : 9
                : e73455
                Affiliations
                [1 ]Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
                [2 ]Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, California, United States of America
                [3 ]Eureka Genomics, Hercules, California, United States of America
                [4 ]Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
                [5 ]Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
                Loyola University Medical Center, United States of America
                Author notes

                Competing Interests: HK and VYF are affiliated with the commercial company Eureka Genomics, which provides nucleic acid detection services based on shotgun metagenomic data. Company affiliation in no way influenced study design and does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials; the authors have no related patents or commercial products to declare.

                Conceived and designed the experiments: CJ PJJ. Performed the experiments: JBT SRE TSB. Analyzed the data: NAB SNG KSM VYF SRE TSB CJ. Contributed reagents/materials/analysis tools: CJ TSB HK. Wrote the manuscript: NAB CJ SNG VYF HK.

                Article
                PONE-D-13-08341
                10.1371/journal.pone.0073455
                3767809
                24039948
                f6702fce-bd8a-4eb3-b228-817d40f7b6cc
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 February 2013
                : 3 July 2013
                Funding
                Funding for this research was provided through contract HSHQDC-09-X-00168 to Lawrence Livermore National Laboratory by the Department of Homeland Security, Science and Technology Directorate. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article