2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Could diffuse coevolution explain the generic eggshell color of the brown-headed cowbird?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The brown-headed cowbird (hereafter cowbird) is an avian brood parasite that produces an egg dissimilar to those produced by the majority of its diverse host community. The cowbird’s generic egg may result from a Jack-of-all-trades strategy; however, the evolutionary mechanisms that select for their generic eggs are unclear. Here we propose that the cowbird’s eggshell phenotypes have evolved via diffuse coevolution, which results from community-level selective pressures, rather than via pairwise coevolution that occurs between a particular host species and its brood parasite. Under diffuse coevolution the cowbird’s host community, with varying eggshell phenotypes and recognition abilities, would select for a cowbird eggshell phenotype intermediate to those of its host community. This selection is exerted by hosts that reject cowbird eggs, rather than those that accept them; therefore, we expect cowbird eggshell colors can be approximated by both the phenotypes and rejection abilities of their host community. Here we use eggshell reflectance data from 43 host species to demonstrate that the cowbird eggshell phenotypes are reasonably predicted (within 2 just noticeable differences) by the eggshell phenotypes and rejection rates of their hosts. These findings suggest that cowbird eggshell phenotypes, and potentially those of other some generalist parasites, may evolve via diffuse coevolution. Importantly, this research provides insight into the underlying evolutionary processes that explain observed phenotypic variation and provides a framework for studying selection on both specialist and generalist parasites’ traits.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings.

          We use a tetrahedral color space to describe and analyze male plumage color variation and evolution in a clade of New World buntings--Cyanocompsa and Passerina (Aves: Cardinalidae). The Goldsmith color space models the relative stimulation of the four retinal cones, using the integrals of the product of plumage reflectance spectra and cone sensitivity functions. A color is represented as a vector defined by the relative stimulation of the four cone types--ultraviolet, blue, green, and red. Color vectors are plotted in a tetrahedral, or quaternary, plot with the achromatic point at the origin and the ultraviolet/violet channel along the Z-axis. Each color vector is specified by the spherical coordinates theta, phi, and r. Hue is given by the angles theta and phi. Chroma is given by the magnitude of r, the distance from the achromatic origin. Color vectors of all distinct patches in a plumage characterize the plumage color phenotype. We describe the variation in color space occupancy of male bunting plumages, using various measures of color contrast, hue contrast and diversity, and chroma. Comparative phylogenetic analyses using linear parsimony (in MacClade) and generalized least squares (GLS) models (in CONTINUOUS) with a molecular phylogeny of the group document that plumage color evolution in the clade has been very dynamic. The single best-fit GLS evolutionary model of plumage color variation over the entire clade is a directional change model with no phylogenetic correlation among species. However, phylogenetic innovations in feather color production mechanisms--derived pheomelanin and carotenoid expression in two lineages--created new opportunities to colonize novel areas of color space and fostered the explosive differentiation in plumage color. Comparison of the tetrahedral color space of Goldsmith with that of Endler and Mielke demonstrates that both provide essentially identical results. Evolution of avian ultraviolet/violet opsin sensitivity in relation to chromatic experience is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor noise as a determinant of colour thresholds.

            Inferences about mechanisms at one particular stage of a visual pathway may be made from psychophysical thresholds only if the noise at the stage in question dominates that in the others. Spectral sensitivities, measured under bright conditions, for di-, tri-, and tetrachromatic eyes from a range of animals can be modelled by assuming that thresholds are set by colour opponency mechanisms whose performance is limited by photoreceptor noise, the achromatic signal being disregarded. Noise in the opponency channels themselves is therefore not statistically independent, and it is not possible to infer anything more about the channels from psychophysical thresholds. As well as giving insight into mechanisms of vision, the model predicts the performance of colour vision in animals where physiological and anatomical data on the eye are available, but there are no direct measurements of perceptual thresholds. The model, therefore, is widely applicable to comparative studies of eye design and visual ecology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              WHEN IS IT COEVOLUTION?

                Bookmark

                Author and article information

                Contributors
                Role: Handling Editor
                Journal
                Curr Zool
                Curr Zool
                czoolo
                Current Zoology
                Oxford University Press
                1674-5507
                2396-9814
                December 2021
                23 September 2021
                23 September 2021
                : 67
                : 6
                : 645-652
                Affiliations
                [1 ] Department of Biology, George Mason University , Fairfax, VA 22030, USA
                [2 ] Department of Biology, Mansfield University of Pennsylvania , Mansfield, PA 16933, USA
                [3 ] Museum of Natural Science and Department of Biological Sciences, Louisiana State University , Baton Rouge, LA 70803, USA
                Author notes
                Address correspondence to Daniel Hanley. E-mail: dhanley2@ 123456gmu.edu
                Article
                zoab078
                10.1093/cz/zoab078
                8599007
                f68424b8-eca3-4715-8c71-f6886bf524e4
                © The Author(s) (2021). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 21 February 2021
                : 13 September 2021
                Page count
                Pages: 8
                Categories
                Special Column: Avian brood parasite/host interactions: behavior, personality and mechanism
                Guest Editor: Canchao YANG
                AcademicSubjects/SCI01320
                AcademicSubjects/SCI01130

                cowbird,diffuse coevolution,egg rejection
                cowbird, diffuse coevolution, egg rejection

                Comments

                Comment on this article