107
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MERS Coronaviruses in Dromedary Camels, Egypt

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We identified the near-full-genome sequence (29,908 nt, >99%) of Middle East respiratory syndrome coronavirus (MERS-CoV) from a nasal swab specimen from a dromedary camel in Egypt. We found that viruses genetically very similar to human MERS-CoV are infecting dromedaries beyond the Arabian Peninsula, where human MERS-CoV infections have not yet been detected.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found

          Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

          In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

            The source of human infection with Middle East respiratory syndrome coronavirus remains unknown. Molecular investigation indicated that bats in Saudi Arabia are infected with several alphacoronaviruses and betacoronaviruses. Virus from 1 bat showed 100% nucleotide identity to virus from the human index case-patient. Bats might play a role in human infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Close Relative of Human Middle East Respiratory Syndrome Coronavirus in Bat, South Africa

              To the Editor: The severe acute respiratory syndrome (SARS) outbreak of 2002–03 and the subsequent implication of bats as reservoir hosts of the causative agent, a coronavirus (CoV), prompted numerous studies of bats and the viruses they harbor. A novel clade 2c betacoronavirus, termed Middle East respiratory syndrome (MERS)–CoV, was recently identified as the causative agent of a severe respiratory disease that is mainly affecting humans on the Arabian Peninsula ( 1 ). Extending on previous work ( 2 ), we described European Pipistrellus bat–derived CoVs that are closely related to MERS-CoV ( 3 ). We now report the identification of a South Africa bat derived CoV that has an even closer phylogenetic relationship with MERS-CoV. During 2011–2012, fecal pellets were collected from 62 bats representing 13 different species in the KwaZulu-Natal and Western Cape Provinces of South Africa and stored in RNAlater solution (Life Technologies, Carlsbad, CA, USA). Details about the bat sample are available in the Technical Appendix. RNA was extracted by using the QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, Germany). Screening for CoVs was done by nested reverse transcription PCR using broadly reactive oligonucleotide primers targeting a conserved region in the RNA-dependent RNA polymerase (RdRp) gene (online Technical Appendix). PCR results were positive for 5 (8%) of the 62 specimens. PCR amplicons for 4 positive specimens yielded alphacoronavirus sequences related to recently described bat alphacoronaviruses from South Africa ( 4 ). The other positive specimen, termed PML/2011, was from an adult female Neoromicia cf. zuluensis bat sampled in 2011; the specimen yielded a novel betacoronavirus (GenBank accession no. KC869678). Technical Appendix Figure 1 shows the distribution of this bat species. To obtain better phylogenetic resolution, we extended the 398-nt RdRp fragment generated by the screening PCR to 816 nt, as described ( 5 ). PML/2011 differed from MERS-CoV by only 1 aa exchange (0.3%) in the translated 816-nt RdRp gene fragment. Thus, PML/2011 was much more related to MERS-CoV than any other known virus. The amino acid sequence of the next closest known relatives of MERS-CoV, from European Pipistrellus bats ( 3 ), differed from MERS-CoV by 1.8%. The amino acid sequences of viruses from Nycteris bats in Ghana ( 3 ) and the 2c prototype bat CoVs, HKU4 and HKU5, from China ( 6 ) differed by 5.5%–7.7% from MERS-CoV. The smaller 152- to 396-nt RdRp fragments of 2c bat CoVs from a Hypsugo savii bat in Spain ( 7 ), bat guano in Thailand ( 8 ), and a Nyctinomops bat in Mexico ( 9 ) showed no or only partial overlap with the 816-nt fragment generated in this study; thus, a direct comparison could not be done. However, in their respective RdRp fragments, these CoVs yielded amino acid sequence distances of 3.5%–8.0% and were thus probably more distant from MERS-CoV than the virus described here. A Bayesian phylogenetic analysis of the 816-nt RdRp sequence confirmed the close relationship between PML/2011 and MERS-CoV (Figure). Their phylogenetic relatedness was as close as that of SARS-CoV and the most closely related bat coronavirus known, Rs672 from a Rhinolophus sinicus bat (Figure). Like PML/2011 and MERS-CoV, Rs672 and SARS-CoV showed only 1 aa exchange in the translated 816-nt RdRp fragment. To confirm this relatedness, we amplified and sequenced a short 269-nt sequence encompassing the 3′-terminus of the spike gene for PML/2011 (oligonucleotide primers available upon request from the authors). A partial spike gene–based phylogeny using this sequence yielded the same topology as that using the partial RdRp sequence (Technical Appendix Figure 2). Again, PML/2011 was most closely related to MERS-CoV, showing only a 10.9% aa sequence distance in this gene, which encodes the glycoprotein responsible for CoV attachment and cellular entry. This distance was less than the 13.3% aa sequence distance between MERS-CoV and the European Pipistrellus CoVs ( 3 ) and less than the 20.5%–27.3% aa sequence distance between MERS-CoV and HKU5 and between MERS-CoV and HKU4 ( 6 ) in the same sequence fragment. Figure Partial RNA-dependent RNA polymerase (RdRp) gene phylogeny, including the novel betacoronavirus from a Neoromicia zuluensis bat in South Africa (GenBank accession no. KC869678 for both partial RdRp and spike gene sequences). The Bayesian phylogeny was done on a translated 816-nt RdRp gene sequence fragment, as described ( 5 ). MrBayes V3.1 (http://mrbayes.sourceforge.net/) was used with a WAG substitution model assumption over 2,000,000 generations sampled every 100 steps, resulting in 20,000 trees, of which 25% were discarded as burn-in. A whale gammacoronavirus was used as an outgroup. The novel N. zuluensis bat virus is highlighted in gray. Values at deep nodes represent statistical support from posterior probabilities. Only values >0.9 are shown. Coronavirus clades are depicted to the right of taxa. Scale bar represents genetic distance. MERS-CoV, Middle East respiratory syndrome coronavirus; SARS, severe acute respiratory syndrome; Bt-CoV, bat coronavirus; HCoV, human coronavirus, MHV, mouse hepatitis virus; FCoV, feline coronavirus; TGEV, transmissible gastroenteritis coronavirus. Our results further support the hypothesis that, like human CoV-229E and SARS-CoV, ancestors of MERS-CoV might exist in Old World insectivorous bats belonging to the family Vespertilionidae, to which the genera Neoromicia and Pipistrellus belong ( 3 ). Knowledge of the close relatedness of PML/2011 and MERS-CoV, which contrasts with the more distant relatedness of CoVs in bats from the Americas and Asia, enables speculations of an African origin for bat reservoir hosts of MERS-CoV ancestors. This hypothesis is limited by a global sampling bias, the small sample size, and the single clade 2c betacoronavirus detection in this study. Still, a putative transfer of MERS-CoV ancestors from Africa to the Arabian Peninsula would parallel the transfer of other viruses (e.g., the exportation of Rift Valley fever virus from East Africa, which led to a severe outbreak in Saudi Arabia in 2000) ( 10 ). Studies of Vespertilionidae bats and potential intermediate hosts (e.g., carnivores and ungulates, such as camels) are urgently needed to elucidate the emergence of MERS-CoV. Such studies should focus on the Arabian Peninsula and Africa. Technical Appendix Description of bat sampling, screened bat species, distribution of Neoromicia zuluensis bats, and spike gene phylogeny of the 2c betacoronavirus clade.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                June 2014
                : 20
                : 6
                : 1049-1053
                Affiliations
                [1]The University of Hong Kong, Hong Kong, China (D.K.W. Chu, L.L.M. Poon, R.A.P.M. Perera, Y. Guan, M. Peiris);
                [2]National Research Centre, Giza, Egypt (M.M. Gomaa, M.M. Shehata, D.A. Zeid, A.S. El Rifay, M.A. Ali);
                [3]HKU-Pasteur Research Pole, Hong Kong (L.Y. Siu);
                [4]St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (R.J. Webby, G. Kayali)
                Author notes
                Addresses for correspondence: Malik Peiris, School of Public Health, The University of Hong Kong, 21 Sassoon Rd, Pokfulam, Hong Kong Special Administrative Region, China; email: malik@ 123456hku.hk ; Ghazi Kayali, Division of Virology, Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA; email: ghazi.kayali@ 123456stjude.org
                Article
                14-0299
                10.3201/eid2006.140299
                4036765
                24856660
                f6d0ecd3-10e2-4635-8cae-0494ac32ca24
                History
                Categories
                Expedited
                Dispatch
                Dispatch

                Infectious disease & Microbiology
                zoonosis,pneumonia,genomics,phylogeny,dromedary,camel,egypt,viruses,coronaviruses,middle east respiratory syndrome,mers,mers-cov

                Comments

                Comment on this article